A combustion device operating in Moderate or Intense Low-oxygen Dilution (MILD) condition is numerically simulated. The burner consists of a cylindrical hot co-flow generator with an injector installed on the central axis. The hot co-flow is obtained by the lean combustion of Dutch Natural Gas (DNG). The spray is injected through an industrial pressure swirl atomiser using liquid ethanol as fuel. MILD combustion consists in burning the fuel in a high temperature environment so that the temperature gradients are limited and the production of pollutants such as NO x reduced. MILD combustion has been investigated for furnace applications and for various gaseous fuels, recently it has also been explored for spray combustion. The simulation is performed in the context of Large Eddy Simulation (LES) and the transported pdf equation for the scalars is solved using the stochastic fields approach. The validation of the results is based on the comparison with experimental data. The characteristics of the injector are obtained a posteriori by the use of the measurements at downstream location. The simulation correctly reproduces the velocity profiles of the particles within their size classes and the integral particle size distribution which is represented by the Sauter Mean Diameter (SMD). The gas phase temperature and velocity are also in good agreement with the measurements, however, some discrepancies are observed, presumably because of the lack of modelling of primary atomisation. The model employed appears to reliably reproduce the behaviour of the spray combustion system under MILD conditions.
The paper describes the results of a computational study of the auto-ignition of a fuel spray under Exhaust Gas Recirculation (EGR) conditions, a technique used to reduce the production of NO x. Large Eddy Simulation (LES) is performed, and the stochastic field method is used for the solution of the joint sub-grid probability density function (pdf) of the chemical species and energy. The fuel spray is n-heptane, a diesel surrogate and its chemical kinetics are described by a reduced mechanism involving 22 species and 18 reaction steps. The method is applied to a constant volume combustion vessel able to reproduce EGR conditions by the ignition of a hot gas mixture previously introduced into the chamber. Once the prescribed conditions are reached the fuel is then injected. Different EGR conditions in terms of temperature and initial ambient chemical composition are simulated. The results are in good overall agreement with measurements both regarding the ignition delay times and the lift-off heights.
A computational investigation of three configurations of the Delft Spray in Hot-diluted Co-flow (DSHC) is presented. The selected burner comprises a hollow cone pressure swirl atomiser, injecting an ethanol spray, located in the centre of a hot co-flow generator, with the conditions studied corresponding to Moderate or Intense Low-oxygen Dilution (MILD) combustion. The simulations are performed in the context of Large Eddy Simulation (LES) in combination with a transport equation for the joint probability density function (pdf) of the scalars, solved using the Eulerian stochastic field method. The liquid phase is simulated by the use of a Lagrangian point particle approach, where the sub-grid-scale interactions are modelled with a stochastic approach. Droplet breakup is represented by a simple primary breakup model in combination with a stochastic secondary breakup formulation. The approach requires only a minimal knowledge of the fuel injector and avoids the need to specify droplet size and velocity distributions at the injection point. The method produces satisfactory agreement with the experimental data and the velocity fields of the gas and liquid phase both averaged and ‘size-class by size-class’ are well depicted. Two widely accepted evaporation models, utilising a phase equilibrium assumption, are used to investigate the influence of evaporation on the evolution of the liquid phase and the effects on the flame. An analysis on the dynamics of stabilisation sheds light on the importance of droplet size in the three spray flames; different size droplets play different roles in the stabilisation of the flames.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.