Myeloperoxidase is a signature enzyme of polymorphonuclear neutrophils in mice and humans. Being a component of circulating white blood cells, myeloperoxidase plays multiple roles in various organs and tissues and facilitates their crosstalk. Here, we describe the current knowledge on the tissue- and lineage-specific expression of myeloperoxidase, its well-studied enzymatic activity and incoherently understood non-enzymatic role in various cell types and tissues. Further, we elaborate on Myeloperoxidase (MPO) in the complex context of cardiovascular disease, innate and autoimmune response, development and progression of cancer and neurodegenerative diseases.
Aims Marfan syndrome (MFS) is a connective tissue disorder caused by mutations in the Fibrillin-1 gene. It is associated with formation of thoracic aortic aneurysms that can potentially be a life-threatening condition due to aortic rupture or dissection. Excessive non-canonical transforming growth factor beta signalling, mediated by activation of extracellular-signal regulated kinases 1/2 (ERK1/2), as well as inducible nitric oxide synthase (NOS2)-dependent nitric oxide production have been identified to drive aortic pathology in MFS through induction of elastin fragmentation and smooth muscle cell apoptosis. Despite promising results in animal studies, specific pharmacological interventions approved for clinical use in patients with MFS-related aortic disease are rare. Nitro-oleic acid (NO2-OA) is an endogenously generated signalling modulator, which is available as an oral compound and has been shown to inhibit ERK1/2 activation and NOS2 expression in different disease models, thereby exerting promising therapeutic effects. In this study, we investigated whether NO2-OA decreases aortic dilation in MFS. Methods and Results Eight-week-old MFS (Fbn1C1041G/+) mice were treated with NO2-OA or vehicle for four weeks via subcutaneously implanted osmotic minipumps. Echocardiography indicated progressive ascending aortic dilation and wall stiffening in MFS mice, which was significantly attenuated by NO2-OA treatment. This protective effect was mediated by inhibition of aortic ERK1/2, Smad2 as well as nuclear factor kappa B overactivation and consequent attenuation of elastin fragmentation by matrix metalloproteinase 2, apoptosis and collagen deposition. Critically, the therapeutic efficacy of NO2-OA in MFS was further emphasized by demonstrating its capability to reduce lethal aortic complications in Fbn1C1041G/+mice challenged with Angiotensin II. Conclusion NO2-OA distinctly attenuates progression of aortic dilation in MFS via modulation of well-established disease-mediating pathways, thereby meriting further investigation into its application as a therapeutic agent for the treatment of this condition. Translational perspective Thoracic aortic aneurysm formation is the major life-threatening complication of Marfan syndrome, a relatively common genetic connective tissue disorder. Although various potential therapeutic targets have been identified, specific pharmacological treatment options are still unavailable. In this study, we demonstrate that Nitro-oleic acid reduces ascending aortic elastin fragmentation, apoptosis, and fibrotic remodelling in Marfan syndrome through inhibition of extracellular-signal regulated kinases 1/2, Smad2 as well as nuclear factor kappa B overactivation and thereby mitigates aneurysm formation. Thus, Nitro-oleic acid, which has been developed as an oral compound, emerges as a potential treatment option for Marfan-related aortic disease.
Cardiac dysfunctions dramatically increase with age. Revealing a currently unknown contributor to cardiac ageing, we report the age‐dependent, cardiac‐specific accumulation of the lysosphingolipid sphinganine (dihydrosphingosine, DHS) as an evolutionarily conserved hallmark of the aged vertebrate heart. Mechanistically, the DHS‐derivative sphinganine‐1‐phosphate (DHS1P) directly inhibits HDAC1, causing an aberrant elevation in histone acetylation and transcription levels, leading to DNA damage. Accordingly, the pharmacological interventions, preventing (i) the accumulation of DHS1P using SPHK2 inhibitors, (ii) the aberrant increase in histone acetylation using histone acetyltransferase (HAT) inhibitors, (iii) the DHS1P‐dependent increase in transcription using an RNA polymerase II inhibitor, block DHS‐induced DNA damage in human cardiomyocytes. Importantly, an increase in DHS levels in the hearts of healthy young adult mice leads to an impairment in cardiac functionality indicated by a significant reduction in left ventricular fractional shortening and ejection fraction, mimicking the functional deterioration of aged hearts. These molecular and functional defects can be partially prevented in vivo using HAT inhibitors. Together, we report an evolutionarily conserved mechanism by which increased DHS levels drive the decline in cardiac health.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.