Powder metallurgy (PM) steels containing boron form an attractive group of alloys because of the important densification that can be achieved through permanent liquid phase sintering (LPS). However, upon solidification, such liquid phase is known to form borides or borocarbides. Recent works have shown that some alloying elements have significant interactions with the LPS of PM steels containing boron. More specifically, it is suspected that the concentration of prealloyed molybdenum influences the formation of boride/borocarbide upon cooling at the end of the sintering cycle. Therefore, the main objective of this work is to describe the relationship that exists between the concentration of prealloyed molybdenum and the crystal structure of the boride/borocarbide eutectic component that typically forms in PM steels containing boron. A master alloy made of iron-manganese-nickel-boron-carbon was utilized to introduce boron, thus providing enhanced sintering through LPS. Characterization in optical and scanning electron microscopy combined with electron-backscattered diffraction and energy-dispersive X-ray spectrometry (EDS) revealed that increasing the prealloyed molybdenum content not only increased the volume fraction of liquid phase but also modified the morphology and the nature of the boron-rich eutectic. Changing the prealloyed molybdenum content from 0.5 to 0.85 wt.% transformed the discontinuous M2B boride to a continuous M23(C,B)6 borocarbide phase, causing a drastic decrease in strength despite the higher densification observed at 0.85 wt.% molybdenum. The effect of molybdenum on the LPS process of boron PM steels is undeniable and was found to occur after the initial formation of the liquid phase. Indeed, differential scanning calorimetry revealed no difference in the endothermic melting peaks temperature for both concentration of molybdenum.
Metal powders developed for additive manufacturing processes need to achieve specific flow characteristics to be considered suitable. However, for the relationship between powder flow and the morphological characteristics of individual particles can be difficult to establish. In this context, artificial intelligence appears to be the perfect tool to clarify the imprecision surrounding this type of interaction. The work summarised in this manuscript first uses a neural network architecture (Mask R-CNN) allowing the segmentation of individual wateratomised tool steel particles in micrographs acquired in scanning electron microscopy. The micrographs of individual particles or their shape descriptors are then processed using and comparing two different strategies, namely linear regression or unsupervised machine learning (ML), to corelate the information collected on individual particles with the rheological properties of powder specimens. The approach developed aims to acquire new knowledge regarding specific particle characteristics that are required to optimise powder flowability for laser powder-bed fusion.
Liquid phase sintering (LPS) of powder metallurgy (PM) components is a well-recognised strategy to enhance the densification of pressed-and-sintered compacts. This work reports the investigation on the liquid phase formation when a Fe-Ni-Mn-C-B master alloy (MA) is used as a boron carrier in combination with two iron base powders pre-alloyed with Mo. Through differential scanning calorimetry tests, quantitation of the microstructure with the help of artificial intelligence, as well as measurement of sintered density and strength as a function of sintering temperature, it was possible to unravel the mechanisms that take place before and during LPS. It was confirmed that a cascade of events takes place in the solid state prior to reaching the temperature necessary for a eutectic reaction to form a liquid. Additionally, the pre-alloyed Mo content was identified as a factor that modifies the initiation of LPS but not the LPS mechanisms per se.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.