We have generated a novel transgenic mouse model on a C57BL/ 6J genetic background that coexpresses KM670/671NL mutated amyloid precursor protein and L166P mutated presenilin 1 under the control of a neuron-specific Thy1 promoter element (APPPS1 mice). Cerebral amyloidosis starts at 6-8 weeks and the ratio of human amyloid (A)b42 to Ab40 is 1.5 and 5 in pre-depositing and amyloid-depositing mice, respectively. Consistent with this ratio, extensive congophilic parenchymal amyloid but minimal amyloid angiopathy is observed. Amyloid-associated pathologies include dystrophic synaptic boutons, hyperphosphorylated tau-positive neuritic structures and robust gliosis, with neocortical microglia number increasing threefold from 1 to 8 months of age. Global neocortical neuron loss is not apparent up to 8 months of age, but local neuron loss in the dentate gyrus is observed. Because of the early onset of amyloid lesions, the defined genetic background of the model and the facile breeding characteristics, APPPS1 mice are well suited for studying therapeutic strategies and the pathomechanism of amyloidosis by cross-breeding to other genetically engineered mouse models.
BackgroundAlzheimer disease (AD) is a neurodegenerative disorder for which there is no cure. We have investigated synaptic plasticity in area CA1 in a novel AD mouse model (APPPS1-21) which expresses the Swedish mutation of APP and the L166P mutation of human PS-1. This model shows initial plaque formation at 2 months in the neocortex and 4 months in the hippocampus and displays β−amyloid-associated pathologies and learning impairments.Methodology/Principal FindingsWe tested long-term potentiation (LTP) and short term potentiation (paired-pulse facilitation, PPF) of synaptic transmission in vivo in area CA1 of the hippocampus. There was no difference in LTP or PPF at 4–5 months of age in APPPS1-21 mice compared to littermate controls. At 6 months of age there was also no difference in LTP but APPPS1-21 mice showed slightly increased PPF (p<0.03). In 8 months old mice, LTP was greatly impaired in APPPS-21 animals (p<0.0001) while PPF was not changed. At 15 months of age, APPPS1-21 mice showed again impaired LTP compared to littermate controls (p<0.005), and PPF was also significantly reduced at 80 ms (p<0.005) and 160 ms (p<0.01) interstimulus interval. Immunohistological analysis showed only modest amyloid deposition in the hippocampus at 4 and 6 months with a robust increase up to 15 months of age.ConclusionsOur results suggest that increased formation and aggregation of beta amyloid with aging is responsible for the impaired LTP with aging in this mouse model, while the transient increase of PPF at 6 months of age is caused by some other mechanism.
The incretins glucagon-like peptide 1 (GLP-1) and glucose dependent insulinotropic polypeptide (GIP) are growth factors that have shown neuroprotective effects in animal models of Parkinson's and Alzheimer's disease. In addition, the GLP-1 mimetic exendin-4 has shown protective effects in a clinical trial in Parkinson's disease (PD) patients. GLP-1 analogues are currently on the market as treatments for type II diabetes. We previously showed that the novel dual agonist (DA-JC1) was effective in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. Here we demonstrate that DA-JC1 is neuroprotective in the 6-OHDA brain lesion rat model of PD. When treating rats for 6 weeks with DA-JC1 at 25 nmol/kg ip once-daily, motor activity as tested in the Rotarod and in the open field was much improved. In the amphetamine and apomorphine circling behaviour tests, the 6-OHDA induced impairments were much reduced by the DA-JC1 treatment. The number of TH positive dopaminergic neurons in the substantia nigra was decreased by 6-OHDA lesion and was increased by DA-JC1 treatment. Dopamine levels in the basal ganglia were reduced by 6-OHDA lesion and increased by DA-JC1. In western blot analysis, levels of the growth factor GDNF and pAkt/CREB cell signaling was enhanced by DA-JC1. The autophagy marker Beclin1 was also activated by the drug. The results demonstrate that dual GLP-1/GIP receptor agonists show promise as a novel treatment for PD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.