The two studies were very different in terms of included populations, interventions and comparisons and so it is therefore difficult to draw conclusions for practice. The evidence suggests that there is no benefit of a low-volume (5 ml) nebulised saline spray over intranasal steroids. There is some benefit of daily, large-volume (150 ml) saline irrigation with a hypertonic solution when compared with placebo, but the quality of the evidence is low for three months and very low for six months of treatment.
Background Allergic rhinitis is a common condition affecting both adults and children. Patients experience symptoms of nasal obstruction, rhinorrhoea, sneezing and nasal itching, which may affect their quality of life. Nasal irrigation with saline (salty water), also known as nasal douching, washing or lavage, is a procedure that rinses the nasal cavity with isotonic or hypertonic saline solutions. It can be performed with low positive pressure from a spray, pump or squirt bottle, with a nebuliser or with gravity-based pressure in which the person instils saline into one nostril and allows it to drain out of the other. Saline solutions are available over the counter and can be used alone or as an adjunct to other therapies. Objectives To evaluate the effects of nasal saline irrigation in people with allergic rhinitis. Search methods The Cochrane ENT Information Specialist searched the ENT Trials Register; CENTRAL; Ovid MEDLINE; Ovid Embase; CINAHL; Web of Science; ClinicalTrials.gov; ICTRP and additional sources for published and unpublished trials. The date of the search was 23 November 2017. Selection criteria Randomised controlled trials (RCTs) comparing nasal saline irrigation, delivered by any means and with any volume, tonicity and alkalinity, with (a) no nasal saline irrigation or (b) other pharmacological treatments in adults and children with allergic rhinitis. We included studies comparing nasal saline versus no saline, where all participants also received pharmacological treatment (intranasal corticosteroids or oral antihistamines). Data collection and analysis We used the standard methodological procedures expected by Cochrane. Primary outcomes were patient-reported disease severity and a common adverse effect-epistaxis. Secondary outcomes were disease-specific health-related quality of life (HRQL), individual symptom scores, general HRQL, the adverse effects of local irritation or discomfort, ear symptoms (pain or pressure) and nasal endoscopy scores. We used GRADE to assess the quality of the evidence for each outcome; this is indicated in italics.
ObjectiveTo assess the effect of coding quality on estimates of the incidence of diabetes in the UK between 1995 and 2014.DesignA cross-sectional analysis examining diabetes coding from 1995 to 2014 and how the choice of codes (diagnosis codes vs codes which suggest diagnosis) and quality of coding affect estimated incidence.SettingRoutine primary care data from 684 practices contributing to the UK Clinical Practice Research Datalink (data contributed from Vision (INPS) practices).Main outcome measureIncidence rates of diabetes and how they are affected by (1) GP coding and (2) excluding ‘poor’ quality practices with at least 10% incident patients inaccurately coded between 2004 and 2014.ResultsIncidence rates and accuracy of coding varied widely between practices and the trends differed according to selected category of code. If diagnosis codes were used, the incidence of type 2 increased sharply until 2004 (when the UK Quality Outcomes Framework was introduced), and then flattened off, until 2009, after which they decreased. If non-diagnosis codes were included, the numbers continued to increase until 2012. Although coding quality improved over time, 15% of the 666 practices that contributed data between 2004 and 2014 were labelled ‘poor’ quality. When these practices were dropped from the analyses, the downward trend in the incidence of type 2 after 2009 became less marked and incidence rates were higher.ConclusionsIn contrast to some previous reports, diabetes incidence (based on diagnostic codes) appears not to have increased since 2004 in the UK. Choice of codes can make a significant difference to incidence estimates, as can quality of recording. Codes and data quality should be checked when assessing incidence rates using GP data.
Background Allergic rhinitis is a common condition affecting both adults and children. Patients experience symptoms of nasal obstruction, rhinorrhoea, sneezing and nasal itching, which may affect their quality of life. Nasal irrigation with saline (salty water), also known as nasal douching, washing or lavage, is a procedure that rinses the nasal cavity with isotonic or hypertonic saline solutions. It can be performed with low positive pressure from a spray, pump or squirt bottle, with a nebuliser or with gravity-based pressure in which the person instils saline into one nostril and allows it to drain out of the other. Saline solutions are available over the counter and can be used alone or as an adjunct to other therapies. Objectives To evaluate the effects of nasal saline irrigation in people with allergic rhinitis. Search methods The Cochrane ENT Information Specialist searched the ENT Trials Register; CENTRAL; Ovid MEDLINE; Ovid Embase; CINAHL; Web of Science; ClinicalTrials.gov; ICTRP and additional sources for published and unpublished trials. The date of the search was 23 November 2017. Selection criteria Randomised controlled trials (RCTs) comparing nasal saline irrigation, delivered by any means and with any volume, tonicity and alkalinity, with (a) no nasal saline irrigation or (b) other pharmacological treatments in adults and children with allergic rhinitis. We included studies comparing nasal saline versus no saline, where all participants also received pharmacological treatment (intranasal corticosteroids or oral antihistamines). Data collection and analysis We used the standard methodological procedures expected by Cochrane. Primary outcomes were patient-reported disease severity and a common adverse effect-epistaxis. Secondary outcomes were disease-specific health-related quality of life (HRQL), individual symptom scores, general HRQL, the adverse effects of local irritation or discomfort, ear symptoms (pain or pressure) and nasal endoscopy scores. We used GRADE to assess the quality of the evidence for each outcome; this is indicated in italics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.