The epilepsies affect around 65 million people worldwide and have a substantial missing heritability component. We report a genome-wide mega-analysis involving 15,212 individuals with epilepsy and 29,677 controls, which reveals 16 genome-wide significant loci, of which 11 are novel. Using various prioritization criteria, we pinpoint the 21 most likely epilepsy genes at these loci, with the majority in genetic generalized epilepsies. These genes have diverse biological functions, including coding for ion-channel subunits, transcription factors and a vitamin-B6 metabolism enzyme. Converging evidence shows that the common variants associated with epilepsy play a role in epigenetic regulation of gene expression in the brain. The results show an enrichment for monogenic epilepsy genes as well as known targets of antiepileptic drugs. Using SNP-based heritability analyses we disentangle both the unique and overlapping genetic basis to seven different epilepsy subtypes. Together, these findings provide leads for epilepsy therapies based on underlying pathophysiology.
This paper describes the construction of a computational anatomical atlas of the human hippocampus. The atlas is derived from high-resolution 9.4 Tesla MRI of postmortem samples. The main subfields of the hippocampus (cornu Ammonis fields CA1, CA2/3; the dentate gyrus; and the vestigial hippocampal sulcus) are labeled in the images manually using a combination of distinguishable image features and geometrical features. A synthetic average image is derived from the MRI of the samples using shape and intensity averaging in the diffeomorphic non-linear registration framework, and a consensus labeling of the template is generated. The agreement of the consensus labeling with manual labeling of each sample is measured, and the effect of aiding registration with landmarks and manually generated mask images is evaluated. The atlas is provided as an online resource with the aim of supporting subfield segmentation in emerging hippocampus imaging and image analysis techniques. An example application examining subfield-level hippocampal atrophy in temporal lobe epilepsy demonstrates the application of the atlas to in vivo studies.
Citation for final published version:Thomas, Rhys 2017. Ultra-rare genetic variation in common epilepsies: a case-control sequencing study. Please note: Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may not be reflected in this version. For the definitive version of this publication, please refer to the published source. You are advised to consult the publisher's version if you wish to cite this paper.This version is being made available in accordance with publisher policies. See http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made available in ORCA are retained by the copyright holders.
We present a robust, high-throughput, semiautomated template-based protocol for segmenting the hippocampus in temporal lobe epilepsy. The semiautomated component of this approach, which minimizes user effort while maximizing the benefit of human input to the algorithm, relies on "incomplete labeling." Incomplete labeling requires the user to quickly and approximately segment a few key regions of the hippocampus through a user-interface. Subsequently, this partial labeling of the hippocampus is combined with image similarity terms to guide volumetric diffeomorphic normalization between an individual brain and an unbiased disease-specific template, with fully labeled hippocampi. We solve this many-to-few and few-to-many matching problem, and gain robustness to inter and intrarater variability and small errors in user labeling, by embedding the template-based normalization within a probabilistic framework that examines both label geometry and appearance data at each label. We evaluate the reliability of this framework with respect to manual labeling and show that it increases minimum performance levels relative to fully automated approaches and provides high inter-rater reliability. Thus, this approach does not require expert neuroanatomical training and is viable for high-throughput studies of both the normal and the highly atrophic hippocampus.
This study examined the utility of structural and functional MRI at 1.5 and 3 Tesla (T) in the pre-surgical evaluation and prediction of post-surgical cognitive outcome in temporal lobe epilepsy (TLE). Forty-nine patients undergoing presurgical evaluation for temporal lobe (TL) resection and twenty-five control subjects were studied. Patients completed standard pre-surgical evaluations including, intracarotid amobarbital test (IAT) and neuropsychological testing. During functional imaging, subjects performed a complex visual scene-encoding task. High-resolution structural MRI scans were used to quantify hippocampal volumes. Both structural and functional imaging successfully lateralized the seizure focus and correlated with IAT memory lateralization, with improvement for functional imaging at 3T as compared to 1.5T. Ipsilateral structural and functional MRI data was related to cognitive outcome and greater functional asymmetry was related to earlier age of onset. These findings support continued investigation of the utility of MRI and fMRI in the presurgical evaluation of TLE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.