The present work addresses the coupling of a flamelet database, to a low-Mach approximation of the NavierStokes equations using scalar controlling variables. The model is characterized by the chemistry tabulation based on laminar premixed flamelets in combination with an optimal choice of the reaction progress variable, which is determined based on the computational singular perturbation (CSP) method. The formulation of the model focuses on turbulent premixed flames taking into account the effect of heat losses, but it is easily extended to partially premixed and non-premixed regimes. The model is designed for applications in both, Reynolds-averaged Navier-Stokes (RANS) as well as large-eddy simulations (LES) and results for the two methods are compared. A priori analysis of the database is presented to demonstrate the influence of the reaction progress definition and the chemistry tabulation is validated against a one-dimensional premixed laminar flame. The validation of the turbulent case is performed using a turbulent premixed confined jet flame subject to strong heat losses, in which the model shows a good overall performance.
Closure of surface cracks by self-healing of conventional and MAX phase ceramics under realistic turbulent combustion chamber conditions is presented. Three ceramics namely; Al 2 O 3 , Ti 2 AlC and Cr 2 AlC are investigated. Healing was achieved in Al 2 O 3 by even dispersion of TiC particles throughout the matrix as the MAX phases, Ti 2 AlC and Cr 2 AlC exhibit intrinsic selfhealing. Fully dense samples (>95%) were sintered by spark plasma sintering and damage was introduced by indentation, quenching and low perpendicular velocity impact methods. The samples were exposed to the oxidizing atmosphere in the post flame zone of a turbulent flame in a combustion chamber to heal at temperatures of approx. 1000 °C at low pO 2 levels for 4 h. Full crack-gap closure was observed for cracks up to 20 mm in length and more than 10 μm in width. The reaction products (healing agents) were analysed by scanning electron microscope, x-ray microanalysis and XRD. A semi-quantification of the healing showed that cracks in Al 2 O 3 /TiC composite (width 1 μm and length 100 μm) were fully filled with TiO 2 . In Ti 2 AlC large cracks were fully filled with a mixture of TiO 2 and Al 2 O 3 . And in the Cr 2 AlC, cracks of up to 1.0 μm in width and more than 100 μm in length were also completely filled with Al 2 O 3 .
The presented work addresses the investigation of the heat loss of a confined turbulent jet flame in a lab-scale combustor using a conjugate-heat transfer approach and large-eddy simulation. The analysis includes the assessment of the principal mechanisms of heat transfer in this combustion chamber: radiation, convection and conduction of heat over walls. A staggered approach is used to couple the reactive flow field to the heat conduction through the solid and both domains are solved using two implementations of the same code. Numerical results are compared against experimental data and an assessment of thermal boundary conditions to improve the prediction of the reactive flow field is given.The research leading to these results has received funding through the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7, 2007–2013) under the Grant agreement No. FP7-290042 for the project COPA-GT as well as the European Union’s Horizon 2020 Programme (2014–2020) and from Brazilian Ministry of Science, Technology and Innovation through Rede Nacional de Pesquisa (RNP)\ud under the HPC4E Project, Grant agreement No. 689772. The authors thankfully acknowledge the computer resources, technical expertise and assistance provided by the Red Española de Supercomputación\ud (RES). Finally, the authors would like to thank O. Lammel for the useful discussions and kindly providing the data for the comparison.Peer ReviewedPostprint (published version
This work addresses the prediction of the reacting flow field in a swirl stabilized gas turbine model combustor using large-eddy simulation. The modeling of the combustion chemistry is based on laminar premixed flamelets and the effect of turbulence-chemistry interaction is considered by a presumed shape probability density function. The prediction capabilities of the presented combustion model for perfectly premixed and partially premixed conditions are demonstrated. The effect of partial premixing for the prediction of the reacting flow field is assessed by comparison of a perfectly premixed and partially premixed simulation. Even though significant mixture fraction fluctuations are observed, only small impact of the non-perfect premixing is found on the flow field and flame dynamics. Subsequently, the effect of heat loss to the walls is assessed assuming perfectly premixing. The adiabatic baseline case is compared to heat loss simulations with adiabatic and non-adiabatic chemistry tabulation. The results highlight the importance of considering the effect of heat loss on the chemical kinetics for an accurate prediction of the flow features. Both heat loss simulations significantly improve the temperature prediction, but the non-adiabatic chemistry tabulation is required to accurately capture the chemical composition in the reacting layers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.