The development of male secondary sexual characters such as antlers or horns has substantial biological and socio-economic importance because in many species these traits affect male fitness positively through sexual selection and negatively through trophy hunting. Both environmental conditions and selective hunting can affect horn growth but their relative importance remains unexplored. We first examined how a large-scale climate index, the Pacific Decadal Oscillation (PDO), local weather and population density influenced both absolute and relative annual horn growth from birth to three years of male bighorn sheep Ovis canadensis over 42 years. We then examined the relative influence of environmental conditions and evolution mainly driven by trophy hunting on male horn length at three years of age. Horn growth was positively influenced by low population density and warm spring temperature, suggesting that ongoing climate change should lead to larger horns. Seasonal values of PDO were highly correlated. Horn growth increased with PDO in spring or summer at low density, but was weak at high density regardless of PDO. The interaction between population density and PDO in spring or summer accounted for a similar proportion of the observed annual variation in horn growth (32% or 37%) as did the additive effects of spring temperature and density (34%). When environmental conditions deteriorated, males allocated relatively more resources to summer mass gain than to horn growth, suggesting a conservative strategy favoring maintenance of condition over allocation to secondary sexual characters. Population density explained 27% of the variation in horn length, while evolutionary effects explained 9% of the variance. Thus, our study underlines the importance of both evolution and phenotypic plasticity on the development of a secondary sexual trait.
We know little about the determinants and demographic consequences of the marked seasonal mass changes exhibited by many northern and alpine mammals. We analysed 43 years of data on individual winter mass loss (the difference between mass in early June and mass in mid-September the previous year) and summer mass gain (the difference between mass in mid-September and in early June of the same year) in adult bighorn sheep (Ovis canadensis). We calculated relative seasonal mass change as a proportion of individual body mass at the start of each season. We first examined the effects of weather and population density on relative changes in body mass. We then assessed the consequences of relative seasonal mass changes on reproduction. Mean April-May temperature was the main driver of relative seasonal mass changes: warm springs reduced both relative winter mass loss and summer mass gain of both sexes, likely partially due to a trade-off between growth rate of plants and duration of access to high-quality forage. Because these effects cancelled each other, spring temperature did not influence mass in mid-September. Mothers that lost relatively more mass during the winter had lambs that gained less mass during summer, likely because these females allocated fewer resources to lactation. Winter survival of lambs increased with their summer mass gain. In males, relative mass loss during winter, which includes the rut, did not influence the probability of siring at least one lamb, possibly indicating that greater mating effort did not necessarily translate into greater reproductive success. Our findings improve our understanding of how weather influences recruitment and underline the importance of cryptic mechanisms behind the effects of climate change on demographic traits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.