The tail of a bivariate distribution function in the domain of attraction of a bivariate extreme value distribution may be approximated by that of its extreme value attractor. The extreme value attractor has margins that belong to a three-parameter family and a dependence structure which is characterized by a probability measure on the unit interval with mean equal to 1 2 , which is called the spectral measure. Inference is done in a Bayesian framework using a censored likelihood approach. A prior distribution is constructed on an infinite dimensional model for this measure, the model being at the same time dense and computationally manageable. A trans-dimensional Markov chain Monte Carlo algorithm is developed and convergence to the posterior distribution is established. In simulations, the Bayes estimator for the spectral measure is shown to compare favourably with frequentist non-parametric estimators. An application to a data set of Danish fire insurance claims is provided.
A bivariate distribution with continuous margins can be uniquely decomposed via a copula and its marginal distributions. We consider the problem of estimating the copula function and adopt a Bayesian approach. On the space of copula functions, we construct a finite-dimensional approximation subspace that is parametrized by a doubly stochastic matrix. A major problem here is the selection of a prior distribution on the space of doubly stochastic matrices also known as the Birkhoff polytope. The main contributions of this paper are the derivation of a simple formula for the Jeffreys prior and showing that it is proper. It is known in the literature that for a complex problem like the one treated here, the above results are difficult to obtain. The Bayes estimator resulting from the Jeffreys prior is then evaluated numerically via Markov chain Monte Carlo methodology. A rather extensive simulation experiment is carried out. In many cases, the results favour the Bayes estimator over frequentist estimators such as the standard kernel estimator and Deheuvels' estimator in terms of mean integrated squared error.Comment: Published in at http://dx.doi.org/10.3150/10-BEJ345 the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm
Any continuous bivariate distribution can be expressed in terms of its margins and a unique copula. In the case of extreme-value distributions, the copula is characterized by a dependence function while each margin depends on three parameters. The authors propose a Bayesian approach for the simultaneous estimation of the dependence function and the parameters defining the margins. They describe a nonparametric model for the dependence function and a reversible jump Markov chain Monte Carlo algorithm for the computation of the Bayesian estimator. They show through simulations that their estimator has a smaller mean integrated squared error than classical nonparametric estimators, especially in small samples. They illustrate their approach on a hydrological data set. Un estimateur bayésien de la fonction de dépendance d'une loi des valeurs extrêmes bivariéeRésumé : Toute loi bivariée continue peut s'écrire en fonction de ses marges et d'une copule unique. Dans le cas des lois des valeurs extrêmes, la copule est caractérisée par une fonction de dépendance tandis que chaque marge dépend de trois paramètres. Les auteurs proposent une approche bayésienne pour l'estimation simultanée de la fonction de dépendance et des paramètres définissant les marges. Ils décrivent un modèle non paramétrique pour la fonction de dépendance et un algorithme MCMCà sauts réversibles pour le calcul de l'estimateur bayésien. Ils montrent par simulation que l'erreur quadratique moyenne intégrée de leur estimateur est plus faible que celle des estimateurs classiques, surtout dans de petitséchantillons. Ils illustrent leur proposà l'aide de données hydrologiques.
Pickands dependence functions characterize bivariate extreme value copulas. In this paper, we study the class of polynomial Pickands functions. We provide a solution for the characterization of such polynomials of degree at most $m+2$, $m\geq0$, and show that these can be parameterized by a vector in $\mathbb{R}^{m+1}$ belonging to the intersection of two ellipsoids. We also study the class of Bernstein approximations of order $m+2$ of Pickands functions which are shown to be (polynomial) Pickands functions and parameterized by a vector in $\mathbb{R}^{m+1}$ belonging to a polytope. We give necessary and sufficient conditions for which a polynomial Pickands function is in fact a Bernstein approximation of some Pickands function. Approximation results of Pickands dependence functions by polynomials are given. Finally, inferential methodology is discussed and comparisons based on simulated data are provided.Comment: Published at http://dx.doi.org/10.3150/14-BEJ656 in the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.