SummaryBackgroundParacetamol overdose is common but patient stratification is suboptimal. We investigated the usefulness of new biomarkers that have either enhanced liver specificity (microRNA-122 [miR-122]) or provide mechanistic insights (keratin-18 [K18], high mobility group box-1 [HMGB1], and glutamate dehydrogenase [GLDH]). The use of these biomarkers could help stratify patients for their risk of liver injury at hospital presentation.MethodsUsing data from two prospective cohort studies, we assessed the potential for biomarkers to stratify patients who overdose with paracetamol. We completed two independent prospective studies: a derivation study (MAPP) in eight UK hospitals and a validation study (BIOPAR) in ten UK hospitals. Patients in both cohorts were adults (≥18 years in England, ≥16 years in Scotland), were diagnosed with paracetamol overdose, and gave written informed consent. Patients who needed intravenous acetylcysteine treatment for paracetamol overdose had circulating biomarkers measured at hospital presentation. The primary endpoint was acute liver injury indicating need for continued acetylcysteine treatment beyond the standard course (alanine aminotransferase [ALT] activity >100 U/L). Receiver operating characteristic (ROC) curves, category-free net reclassification index (cfNRI), and integrated discrimination index (IDI) were applied to assess endpoint prediction.FindingsBetween June 2, 2010, and May 29, 2014, 1187 patients who required acetylcysteine treatment for paracetamol overdose were recruited (985 in the MAPP cohort; 202 in the BIOPAR cohort). In the derivation and validation cohorts, acute liver injury was predicted at hospital presentation by miR-122 (derivation cohort ROC–area under the curve [AUC] 0·97 [95% CI 0·95–0·98]), HMGB1 (0·95 [0·93–0·98]), and full-length K18 (0·95 [0·92–0·97]). Results were similar in the validation cohort (miR-122 AUC 0·97 [95% CI 0·95–0·99], HMGB1 0·98 [0·96–0·99], and full-length K18 0·93 [0·86–0·99]). A combined model of miR-122, HMGB1, and K18 predicted acute liver injury better than ALT alone (cfNRI 1·95 [95% CI 1·87–2·03], p<0·0001 in the MAPP cohort; 1·54 [1·08–2·00], p<0·0001 in the BIOPAR cohort).InterpretationPersonalised treatment pathways could be developed by use of miR-122, HMGB1, and full-length K18 at hospital presentation for patient stratification. This prospective study supports their use for hepatic safety assessment of new medicines.FundingEdinburgh and Lothians Health Foundation, UK Medical Research Council.
In utero exposure to atypical antipsychotic drugs may increase infant birth weight and risk of LGA.
AimsIn September 2012 the UK's Commission on Human Medicines (CHM) recommended changes in the management of paracetamol poisoning: use of a single ‘100 mg l−1’ nomogram treatment line, ceasing risk assessment, treating all staggered/uncertain ingestions and increasing the duration of the initial acetylcysteine (NAC) infusion from 15 to 60 min. We evaluated the effect of this on presentation, admission, treatment, adverse reactions and costs of paracetamol poisoning.MethodsData were prospectively collected from adult patients presenting to three large UK hospitals from 3 September 2011 to 3 September 2013 (year before and after change). Infusion duration effect on vomiting and anaphylactoid reactions was examined in one centre. A cost analysis from an NHS perspective was performed for 90 000 patients/annum with paracetamol overdose.ResultsThere were increases in the numbers presenting to hospital (before 1703, after 1854; increase 8.9% [95% CI 1.9, 16.2], P = 0.011); admitted (1060/1703 [62.2%] vs. 1285/1854 [69.3%]; increase 7.1% [4.0, 10.2], P < 0.001) and proportion treated (626/1703 [36.8%] vs. 926/1854 [50.0%]; increase: 13.2% [95% CI 10.0, 16.4], P < 0.001). Increasing initial NAC infusion did not change the proportion of treated patients developing adverse reactions (15 min 87/323 [26.9%], 60 min 145/514 [28.2%]; increase: 1.3% [95% CI –4.9, 7.5], P = 0.682). Across the UK the estimated cost impact is £8.3 million (6.4 million–10.2 million) annually, with a cost-per-life saved of £17.4 million (13.4 million–21.5 million).ConclusionsThe changes introduced by the CHM in September 2012 have increased the numbers of patients admitted to hospital and treated with acetylcysteine without reducing adverse reactions. A safety and cost-benefit review of the CHM guidance is warranted, including novel treatment protocols and biomarkers in the assessment of poisoning.
Long‐term drug treatment of schizophrenia with conventional antipsychotics has limitations: an estimated quarter to one third of patients are treatment‐resistant; conventional antipsychotics have only a modest impact upon negative symptoms (poverty of thought, social withdrawal and loss of affect); and adverse effects, particularly extrapyramidal symptoms (EPS). Newer, so‐called atypical, antipsychotics such as olanzapine, risperidone, sertindole and clozapine (an old drug which was re‐introduced in 1990) are claimed to address these limitations. Atypical agents are, at a minimum, at least as effective as conventional drugs such as haloperidol. They also cause substantially fewer extrapyramidal symptoms. However, some other adverse effects are more common than with conventional drugs. For example, clozapine carries a significant risk of serious blood disorders, for which special monitoring is mandatory; it also causes troublesome drowsiness and increased salivation more often than conventional agents. Some atypical agents cause more weight gain or QT prolongation than older agents. The choice of therapy is, therefore, not straightforward. At present, atypical agents represent an advance for patients with severe or intolerable EPS. Most published evidence exists to support the use of clozapine, which has also been shown to be effective in schizophrenia refractory to conventional agents. However, the need for compliance with blood count monitoring and its sedative properties make careful patient selection important. The extent of any additional direct benefit offered by atypical agents on negative symptoms is not yet clear. The lack of a depot formulation for atypical drugs may pose a significant practical problem. To date, only two double‐blind studies in which atypical agents were compared directly have been published. Neither provides compelling evidence for the choice of one agent over another. Atypical agents are many times more expensive than conventional drugs. Although drug treatment constitutes only a small proportion of the costs of managing schizophrenia, the additional annual cost of the use of atypical agents in, say, a quarter of the likely U.K. schizophrenic population would be about £56 M. There is only limited evidence of cost‐effectiveness. Atypical antipsychotics are not currently licensed for other conditions where conventional antipsychotics are commonly used, such as behaviour disturbance or dementia in the elderly. Their dose, and place in treatment in such cases have yet to be determined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.