Abstract-Thermostatically controlled loads (TCLs) such as refrigerators, air-conditioners and space heaters offer significant potential for short-term modulation of their aggregate power consumption. This ability can be used in principle to provide frequency response services, but controlling a multitude of devices to provide a measured collective response has proven to be challenging. Many controller implementations struggle to manage simultaneously the short-term response and the longterm payback, whereas others rely on a real-time commandand-control infrastructure to resolve this issue. In this work we propose a novel approach to the control of TCLs that allows for accurate modulation of the aggregate power consumption of a large collection of appliances through stochastic control. By construction, the control scheme is well suited for decentralised implementation, and allows each appliance to enforce strict temperature limits. We also present a particular implementation that results in analytically tractable solutions both for the global response and for the device-level control actions. Computer simulations demonstrate the ability of the controller to modulate the power consumption of a population of heterogeneous appliances according to a reference power profile. Finally, envelope constraints are established for the collective demand response flexibility of a heterogeneous set of TCLs. D. Dependent variablestemperature of warmest appliance (≤ T max ) θ(t) temperature of particular appliancē T (t) ensemble average temperature f (T, t) probability density of all appliances f s (T, t) density of appliances in state s ∈ {on, off} Φ(T, t) net on-off density flux r on off (T, t) stochastic switch-off rate r off on (T, t) stochastic switch-on rate
The highly aligned cortical microtubule array of interphase plant cells is a key regulator of anisotropic cell expansion. Recent computational and analytical work has shown that the non-equilibrium self-organization of this structure can be understood on the basis of experimentally observed collisional interactions between dynamic microtubules attached to the plasma membrane. Most of these approaches assumed that new microtubules are homogeneously and isotropically nucleated on the cortical surface. Experimental evidence, however, shows that nucleation mostly occurs from other microtubules and under specific relative angles. Here, we investigate the impact of directed microtubule-bound nucleations on the alignment process using computer simulations. The results show that microtubule-bound nucleations can increase the degree of alignment achieved, decrease the timescale of the ordering process and widen the regime of dynamic parameters for which the system can self-organize. We establish that the major determinant of this effect is the degree of co-alignment of the nucleations with the parent microtubule. The specific role of sideways branching nucleations appears to allow stronger alignment while maintaining a measure of overall spatial homogeneity. Finally, we investigate the suggestion that observed persistent rotation of microtubule domains can be explained through a handedness bias in microtubule-bound nucleations, showing that this is possible only for an extreme bias and over a limited range of parameters.
The cortical array is a structure consisting of highly aligned microtubules which plays a crucial role in the characteristic uniaxial expansion of all growing plant cells. Recent experiments have shown polymerization-driven collisions between the membrane-bound cortical microtubules, suggesting a possible mechanism for their alignment. We present both a coarse-grained theoretical model and stochastic particle-based simulations of this mechanism, and we compare the results from these complementary approaches. Our results indicate that collisions that induce depolymerization are sufficient to generate the alignment of microtubules in the cortical array.
The plant microtubule cortical array is a striking feature of all growing plant cells. It consists of a more or less homogeneously distributed array of highly aligned microtubules connected to the inner side of the plasma membrane and oriented transversely to the cell growth axis. Here we formulate a continuum model to describe the origin of orientational order in such confined arrays of dynamical microtubules. The model is based on recent experimental observations that show that a growing cortical microtubule can interact through angle dependent collisions with pre-existing microtubules that can lead either to co-alignment of the growth, retraction through catastrophe induction or crossing over the encountered microtubule. We identify a single control parameter, which is fully determined by the nucleation rate and intrinsic dynamics of individual microtubules. We solve the model analytically in the stationary isotropic phase, discuss the limits of stability of this isotropic phase, and explicitly solve for the ordered stationary states in a simplified version of the model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.