Knowledge of historical fire activity tends to be focused at local to landscape scales with few attempts to examine how local patterns of fire activity scale to global patterns. Generally, fire activity varied globally and continuously since the last glacial maximum (LGM) in response to long-term changes in global climate and shorter-term regional changes in climate, vegetation, and human land use. We have synthesised sedimentary charcoal records of biomass burning since the LGM and present global maps showing changes in fire activity for time slices during the past 21,000 years (as differences in charcoal accumulation values compared to pre-industrial). There is strong broad-scale coherence in fire activity after the LGM, but spatial heterogeneity in the signals increases thereafter. In eastern and western North America and western Europe and southern South America, charcoal records indicate less-than-present fire activity from 21,000 to ~11,000 cal yr BP. In contrast, the tropical latitudes of South America and Africa show greaterthan-present fire activity from ~19,000 to ~17,000 cal yr BP whereas most sites from Indochina and Australia show greater-than-present fire activity from 16,000 to ~13,000 cal yr BP. Many sites indicate greater-than-present or near-present activity during the Holocene with the exception of eastern North America and eastern Asia from 8000 to ~2000 cal yr BP, Indonesia from 11,000 to 4000 cal yr BP, and southern South America from 6000 to 3000 cal yr BP where fire activity was less than present. Regional coherence in the patterns of change in fire activity was evident throughout the postglacial period. These complex patterns can be explained in terms of large-scale climate controls modulated by local changes in vegetation and fuel load.
Aim This paper reviews the biogeography of the Australian monsoon tropical biome to highlight general patterns in the distribution of a range of organisms and their environmental correlates and evolutionary history, as well as to identify knowledge gaps.Location Northern Australia, Australian Monsoon Tropics (AMT). The AMT is defined by areas that receive more than 85% of rainfall between November and April.Methods Literature is summarized, including the origin of the monsoon climate, present-day environment, biota and habitat types, and phylogenetic and geographical relationships of selected organisms.Results Some species are widespread throughout the AMT while others are narrow-range endemics. Such contrasting distributions correspond to presentday climates, hydrologies (particularly floodplains), geological features (such as sandstone plateaux), fire regimes, and vegetation types (ranging from rain forest to savanna). Biogeographical and phylogenetic studies of terrestrial plants (e.g. eucalypts) and animals (vertebrates and invertebrates) suggest that distinct bioregions within the AMT reflect the aggregated effects of landscape and environmental history, although more research is required to determine and refine the boundaries of biogeographical zones within the AMT. Phylogenetic analyses of aquatic organisms (fishes and prawns) suggest histories of associations with drainage systems, dispersal barriers, links to New Guinea, and the existence of Lake Carpentaria, now submerged by the Gulf of Carpentaria. Complex adaptations to the landscape and climate in the AMT are illustrated by a number of species.Main conclusions The Australian monsoon is a component of a single global climate system, characterized by a dominant equator-spanning Hadley cell. Evidence of hot, seasonally moist climates dates back to the Late Eocene, implying that certain endemic elements of the AMT biota have a long history. Vicariant differentiation is inferred to have separated the Kimberley and Arnhem Land bioregions from Cape York Peninsula/northern Queensland. Such older patterns are overlaid by younger events, including dispersal from Southeast Asia, and range expansions and contractions. Future palaeoecological and phylogenetic investigations will illuminate the evolution of the AMT biome. Understanding the biogeography of the AMT is essential to provide a framework for ecological studies and the sustainable development of the region.
Giant vertebrates dominated many Pleistocene ecosystems. Many were herbivores, and their sudden extinction in prehistory could have had large ecological impacts. We used a high-resolution 130,000-year environmental record to help resolve the cause and reconstruct the ecological consequences of extinction of Australia's megafauna. Our results suggest that human arrival rather than climate caused megafaunal extinction, which then triggered replacement of mixed rainforest by sclerophyll vegetation through a combination of direct effects on vegetation of relaxed herbivore pressure and increased fire in the landscape. This ecosystem shift was as large as any effect of climate change over the last glacial cycle, and indicates the magnitude of changes that may have followed megafaunal extinction elsewhere in the world.
Multidisciplinary investigations at Kuk Swamp in the Highlands of Papua New Guinea show that agriculture arose independently in New Guinea by at least 6950 to 6440 calibrated years before the present (cal yr B.P.). Plant exploitation and some cultivation occurred on the wetland margin at 10,220 to 9910 cal yr B.P. (phase 1), mounding cultivation began by 6950 to 6440 cal yr B.P. (phase 2), and ditched cultivation began by 4350 to 3980 cal yr B.P. (phase 3). Clearance of lower montane rainforests began in the early Holocene, with modification to grassland at 6950 to 6440 cal yr B.P. Taro (Colocasia esculenta) was utilized in the early Holocene, and bananas (Musa spp.) were intensively cultivated by at least 6950 to 6440 cal yr B.P.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.