In this paper we propose the VIDENS (vision-based user identification from inertial sensors) approach, which transforms inertial sensors time-series data into images that represent in pixel form patterns found over time, allowing even a simple CNN to outperform complex ad-hoc deep learning models that combine RNNs and CNNs for user identification. Our evaluation shows promising results when comparing our approach to some relevant existing methods.
CCS CONCEPTS• Human-centered computing → Ubiquitous and mobile computing systems and tools; Empirical studies in ubiquitous and mobile computing.
In order to achieve the promise of smart spaces where the environment acts to fulfill the needs of users in an unobtrusive and personalized manner, it is necessary to provide means for a seamless and continuous identification of users to know who indeed is interacting with the system and to whom the smart services are to be provided. In this paper, we propose a new approach capable of performing activity-free identification of users based on hand and arm motion patterns obtained from an wrist-worn inertial measurement unit (IMU). Our approach is not constrained to particular types of movements, gestures, or activities, thus, allowing users to perform freely and unconstrained their daily routine while the user identification takes place. We evaluate our approach based on IMU data collected from 23 people performing their daily routines unconstrained. Our results indicate that our approach is able to perform activity-free user identification with an accuracy of 0.9485 for 23 users without requiring any direct input or specific action from users. Furthermore, our evaluation provides evidence regarding the robustness of our approach in various different configurations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.