Proton-energy differences, ammonia adsorption, and D/H-exchange barriers for methane at selected isolated Brønsted sites in zeolites FAU, MFI, BEA, ERI, and CHA are studied by combined quantum-chemicalclassical (QM/MM) calculations in an attempt to understand the factors that determine the reactivity at these Brønsted sites. The barrier of the D/H-exchange reaction for methane was found to correlate well with the calculated ammonia chemisorption energy, but even better with the O-Al-O angle of the free zeolite Brønsted site the reaction is taking place on, provided the Si-O-Al-O-Si moiety over which the reaction takes place is more or less collinear. The barrier is considerably higher if this collinearity is weaker, which may be explained by the necessity of costly backbone distortions to accommodate the geometrical requirements of the transition state. This is confirmed by similarly strong correlations with the O-Al-O angle change going from the free acid site to zeolite-ammonium ion bidentate structures, which may be thought of as a measure of the backbone distortion. A new measurement of the D/H-exchange barrier in BEA is also reported. It was found to be 88 ( 18 kJ/mol, lower than the experimental barriers in both FAU and MFI.
Density functional calculations are performed on models of chlorophyll and bacteriochlorophyll to examine the effect of Mg ligation on the geometry and spin density distribution of the cation free radicals formed. It is shown that, whereas the properties of the bacteriochlorophyll model can be explained on the basis of the electron density distribution of the highest occupied molecular orbital (HOMO), for the chlorophyll model the geometry and spin density properties of the ligated species do not follow this trend. For the ligated chlorophyll models it is shown that, due to the closeness in energy of the HOMO and HOMO-1 orbitals, a Jahn-Teller distortion occurs on one-electron oxidation, leading to an admixed hybrid orbital for the cation radical form. Orbital mixing is shown to lead to significant changes in the geometry and spin density distribution of the cation free radical formed. It is also shown that orbital mixing does not lead to an increase in the magnitude of the (14)N hyperfine couplings thereby invalidating reports in the literature which have dismissed mixed orbital states for the primary donor cation radicals of photosynthetic reaction centers based on this criterion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.