To better understand the structures formed by the interaction of cationic lipids with DNA, we undertook a systematic analysis to determine the biophysical characteristics of cationic lipid:DNA complexes. Four model cationic lipids with different net cationic charge were found to interact in similar ways with DNA when that interaction was compared in terms of the apparent molar charge ratio of lipid to DNA. When DNA was present in charge excess over the cationic lipid, the complex carried a net negative charge as determined by zeta potential measurements. Under these conditions, some DNA was accessible to ethidium bromide, and free DNA was observed in agarose gels and in dextran density gradients. Between a lipid:DNA charge ratio of 1.25 and 1.5:1, all the DNA became complexed to cationic lipid, as evidenced by its inaccessibility to EtBr and its complete association with lipid upon agarose gel electrophoresis and density gradient separations. These complexes carried a net positive charge. The transition between negatively and positively charged complexes a occurred over a very small range of lipid to DNA ratios. Employing a fluorescent lipid probe, the addition of DNA was shown to induce lipid mixing between cationic lipid-containing vesicles. The extent of DNA-induced lipid mixing reached a maximum at a charge ratio of about 1.5:1, the point at which all the DNA was involved in a complex and the complex became positively charged. Together with freeze-fracture electron micrographs of the complexes, these biophysical data have been interpreted in light of the existing models of cationic lipid:DNA complexes.
A major limitation associated with systemic administration of cationic lipid:plasmid DNA (pDNA) complexes is the vector toxicity at the doses necessary to produce therapeutically relevant levels of transgene expression. Systematic evaluation of these toxicities has revealed that mice injected intravenously with cationic lipid:pDNA complexes develop significant, dose-dependent hematologic and serologic changes typified by profound leukopenia, thrombocytopenia, and elevated levels of serum transaminases indicative of hepatocellular necrosis. Vector administration also induced a potent inflammatory response characterized by complement activation and the induction of the cytokines IFN-gamma, TNF-alpha, IL-6, and IL-12. These toxicities were found to be transient, resolving with different kinetics to pretreatment levels by 14 days posttreatment. The toxic syndrome observed was independent of the cationic lipid:pDNA ratio, the cationic lipid species, and the level of transgene expression attained. Mechanistic studies determined that neither the complement cascade nor TNF-alpha were key mediators in the development of these characteristic toxicities. Administration of equivalent doses of the individual vector components revealed that cationic liposomes or pDNA alone did not generate the toxic responses observed with cationic lipid:pDNA complexes. Only moderate leukopenia was associated with administration of cationic liposomes or pDNA alone, while only mild thrombocytopenia was noted in pDNA-treated animals. These results establish a panel of objective parameters that can be used to quantify the acute toxicities resulting from systemic administration of cationic lipid:pDNA complexes, which in turn provides a means to compare the therapeutic indices of these vectors.
Rapid systemic injection of naked plasmid DNA (pDNA) in a large volume into a mouse tail vein has been shown to result in a high level of gene expression in the liver. However, the potential therapeutic benefit to humans embodied in hydrodynamic transfection of the liver cannot be realized until a clinically viable method for gene delivery is developed. In light of this fact, we have devised and evaluated several methods for delivering pDNA to the isolated rabbit liver using minimally invasive catheter-based techniques. Using a lobar technique, pDNA was delivered hydrodynamically to an isolated hepatic lobe using a balloon occlusion balloon catheter to occlude a selected hepatic vein. A whole organ technique was used wherein the entire hepatic venous system was isolated and the pDNA solution injected hydrodynamically into the vena cava between two balloons used to block hepatic venous outflow. Lobar delivery of a plasmid encoding a secreted alkaline phosphatase (SEAP) reporter gene resulted in significant levels of transgene product in the serum. A nonsecreted transgene product, chloramphenicol acetyltransferase (CAT), showed the highest levels of expression in the injected lobe distal to the injection site. Compared to lobar delivery, whole organ delivery yielded much higher serum levels of SEAP expression and a significantly broader hepatic parenchymal distribution of CAT expression. These preliminary studies suggest that catheter-mediated hydrodynamic delivery of pDNA to the isolated liver may provide a method for human gene therapy that is both therapeutically significant and clinically practicable.
Preliminary studies have shown that asymmetric transbilayer distributions of phosphatidic acid (PA) can be induced by transmembrane pH gradients (delta pH) in large unilamellar vesicles [Hope et al. (1989) Biochemistry 28, 4181-4187]. Here the mechanism of PA transport is examined employing TNS as a fluorescent probe of lipid asymmetry. It is shown that the kinetics of PA transport are consistent with the transport of the uncharged (protonated) form. Transport of the neutral form can be rapid, exhibiting half-times for transbilayer transport of approximately 25 s at 45 degrees C. It is also shown that PA transport is associated with a large activation energy (28 kcal/mol) similar to that observed for phosphatidylglycerol. The maximum induced transbilayer asymmetry of PA corresponded to approximately 95% on the inner monolayer for vesicles containing 5 mol % PA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.