The selective oxidation of methane, the primary component of natural gas, remains an important challenge in catalysis. We used colloidal gold-palladium nanoparticles, rather than the same nanoparticles supported on titanium oxide, to oxidize methane to methanol with high selectivity (92%) in aqueous solution at mild temperatures. Then, using isotopically labeled oxygen (O) as an oxidant in the presence of hydrogen peroxide (HO) we demonstrated that the resulting methanol incorporated a substantial fraction (70%) of gas-phase O More oxygenated products were formed than the amount of HO consumed, suggesting that the controlled breakdown of HO activates methane, which subsequently incorporates molecular oxygen through a radical process. If a source of methyl radicals can be established, then the selective oxidation of methane to methanol using molecular oxygen is possible.
The direct synthesis of hydrogen peroxide (H2O2) from H2 and O2 represents a potentially atom-efficient alternative to the current industrial indirect process. We show that the addition of tin to palladium catalysts coupled with an appropriate heat treatment cycle switches off the sequential hydrogenation and decomposition reactions, enabling selectivities of >95% toward H2O2. This effect arises from a tin oxide surface layer that encapsulates small Pd-rich particles while leaving larger Pd-Sn alloy particles exposed. We show that this effect is a general feature for oxide-supported Pd catalysts containing an appropriate second metal oxide component, and we set out the design principles for producing high-selectivity Pd-based catalysts for direct H2O2 production that do not contain gold.
The X-ray photoelectron spectra of metallic iridium and the technologically important iridium compounds, IrO 2 and IrCl 3 , have been studied. The results not only improve the accuracy of published data but also expand the binding energy database of other iridium core-levels. The difference between anhydrous and hydrated materials is explored, and the effect on curve-fitting is discussed, together with the derivation of suitable line shapes for peak fitting of data acquired from a conventional monochromatic Al K α X-ray source.
Hydrogen peroxide is a widely used chemical but is not very efficient to make in smaller than industrial scale. It is an important commodity chemical used for bleaching, disinfection, and chemical manufacture. At present, manufacturers use an indirect process in which anthraquinones are sequentially hydrogenated and oxidized in a manner that hydrogen and oxygen are never mixed. However, this process is only economic at a very large scale producing a concentrated product. For many years, the identification of a direct process has been a research goal because it could operate at the point of need, producing hydrogen peroxide at the required concentration for its applications. Research on this topic has been ongoing for about 100 years. Until the last 10 years, catalyst design was solely directed at using supported palladium nanoparticles. These catalysts require the use of bromide and acid to arrest peroxide decomposition, since palladium is a very active catalyst for hydrogen peroxide hydrogenation. Recently, chemists have shown that supported gold nanoparticles are active when gold is alloyed with palladium because this leads to a significant synergistic enhancement in activity and importantly selectivity. Crucially, bimetallic gold-based catalysts do not require the addition of bromide and acids, but with carbon dioxide as a diluent its solubility in the reaction media acts as an in situ acid promoter, which represents a greener approach for peroxide synthesis. The gold catalysts can operate under intrinsically safe conditions using dilute hydrogen and oxygen, yet these catalysts are so active that they can generate peroxide at commercially significant rates. The major problem associated with the direct synthesis of hydrogen peroxide concerns the selectivity of hydrogen usage, since in the indirect process this factor has been finely tuned over decades of operation. In this Account, we discuss how the gold-palladium bimetallic catalysts have active sites for the synthesis and hydrogenation of hydrogen peroxide that are different, in contrast to monometallic palladium in which synthesis and hydrogenation operate at the same sites. Through treatment of the support with acids prior to the deposition of the gold-palladium bimetallic particles, we can obtain a catalyst that can make hydrogen peroxide at a very high rate without decomposing or hydrogenating the product. This innovation opens up the way to design improved catalysts for the direct synthesis process, and these possibilities are described in this Account.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.