The present study investigated the actions of the polyether marine toxin Pacific ciguatoxin-1 (P-CTX-1) on neuronal excitability in rat dorsal root ganglion (DRG) neurons using patch-clamp recording techniques. Under current-clamp conditions, bath application of 2-20 nM P-CTX-1 caused a rapid, concentration-dependent depolarization of the resting membrane potential in neurons expressing tetrodotoxin (TTX)-sensitive voltage-gated sodium (Nav) channels. This action was completely suppressed by the addition of 200 nM TTX to the external solution, indicating that this effect was mediated through TTX-sensitive Nav channels. In addition, P-CTX-1 also prolonged action potential and afterhyperpolarization (AHP) duration. In a subpopulation of neurons, P-CTX-1 also produced tonic action potential firing, an effect that was not accompanied by significant oscillation of the resting membrane potential. Conversely, in neurons expressing TTX-resistant Nav currents, P-CTX-1 failed to alter any parameter of neuronal excitability examined in this study. Under voltage-clamp conditions in rat DRG neurons, P-CTX-1 inhibited both delayed-rectifier and 'A-type' potassium currents in a dose-dependent manner, actions that occurred in the absence of alterations to the voltage dependence of activation. These actions appear to underlie the prolongation of the action potential and AHP, and contribute to repetitive firing. These data indicate that a block of potassium channels contributes to the increase in neuronal excitability, associated with a modulation of Nav channel gating, observed clinically in response to ciguatera poisoning.
The Janus-faced atracotoxins are a unique family of excitatory peptide toxins that contain a rare vicinal disulfide bridge. Although lethal to a wide range of invertebrates, their molecular target has remained enigmatic for almost a decade. We demonstrate here that these toxins are selective, high-affinity blockers of invertebrate Ca(2+)-activated K(+) (K(Ca)) channels. Janus-faced atracotoxin (J-ACTX)-Hv1c, the prototypic member of this toxin family, selectively blocked K(Ca) channels in cockroach unpaired dorsal median neurons with an IC(50) of 2 nm, but it did not significantly affect a wide range of other voltage-activated K(+), Ca(2+) or Na(+) channel subtypes. J-ACTX-Hv1c blocked heterologously expressed cockroach large-conductance Ca(2+)-activated K(+) (pSlo) channels without a significant shift in the voltage dependence of activation. However, the block was voltage-dependent, indicating that the toxin probably acts as a pore blocker rather than a gating modifier. The molecular basis of the insect selectivity of J-ACTX-Hv1c was established by its failure to significantly inhibit mouse mSlo currents (IC(50) approximately 10 mum) and its lack of activity on rat dorsal root ganglion neuron K(Ca) channel currents. This study establishes the Janus-faced atracotoxins as valuable tools for the study of invertebrate K(Ca) channels and suggests that K(Ca) channels might be potential insecticide targets.
Contractions induced by electrical field stimulation of isolated circular muscle strips, taken from the guinea-pig stomach, were enhanced by metoclopramide, ICS 205-930 and MDL 72222 at concentrations similar to those shown to antagonize at neuronal 5-hydroxytryptamine receptor sites in a variety of preparations. Metoclopramide, MDL 72222 and ICS 205-930 also facilitated gastric emptying in-vivo. The abilities of metoclopramide, MDL 72222 and ICS 205-930 to enhance stomach muscle contraction processes and to facilitate gastric emptying may be the consequence of 5-hydroxytryptamine receptor antagonism.
The effects of GR38032F a novel, selective and potent 5-hydroxytryptamine (5-HT3)-receptor antagonist on gastric emptying in the guinea-pig were investigated and compared to those of metoclopramide and haloperidol. Both GR38032F and metoclopramide increased gastric emptying in a dose-dependent manner. In contrast, haloperidol was ineffective. GR38032F was about 200 times more potent than metoclopramide in enhancing gastric emptying over the 2 h period studied.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.