NOD mice develop spontaneous IDDM as a result of T-cell-mediated autoimmune destruction of pancreatic beta-cells. It is not known why these T-cells become autoreactive, nor is it clear whether the breakdown in self-tolerance reflects a general problem in T-cell development or a selective defect in an as yet undefined regulatory cell population. In this study, we showed that NOD mice, although relatively normal with regard to most thymocyte subsets, exhibit a marked deficiency in alphabetaTCR+CD4-CD8- (alphabeta+DN) T-cells in the thymus and, to a lesser extent, in the periphery. These T-cells have been termed NKT cells (NK1.1+-like T-cells) because they share some cell surface markers with conventional natural killer (NK) cells. To examine the role of these cells in the pathogenesis of IDDM, semiallogeneic or syngeneic double-negative (DN) thymocytes, enriched for NKT cells, were transferred into intact 4-week-old NOD recipients; the onset of diabetes was then monitored over the ensuing 30 weeks. Mice receiving NKT-enriched thymocytes did not develop diabetes, whereas mice receiving unfractionated thymocytes or phosphate-buffered saline developed diabetes at the normal rate. NKT cells represent a distinct T-cell lineage that has been shown to play a role in immunoregulation in vivo. The deficiency of these cells observed in NOD mice may therefore contribute to destruction of pancreatic islet cells by conventional T-cells.
During gastrulation and early organogenesis, Lim1 is expressed in the visceral endoderm, the anterior mesendoderm, and the lateral mesoderm that comprises the lateral plate and intermediate mesoderm. A previous study has reported that kidneys and gonads are missing in the Lim1 null mutants (W. Shawlot and R. R. Behringer, 1995, Nature 374, 425-430). Results of the present study show that in the early organogenesis stage mutant embryo, the intermediate mesoderm that contains the urogenital precursor tissues is disorganized and displays diminished expression of PAX2 and the Hoxb6-lacZ transgene. When posterior epiblast cells of the Lim1 null mutant embryo were transplanted to the primitive streak of wild-type host embryos, they were able to colonize the lateral plate and intermediate mesoderm of the host, suggesting that Lim1 activity is not essential for the allocation of epiblast cells to these mesodermal lineages. However, most of the mutant cells that colonized the lateral and intermediate mesoderm of the host embryo did not express the Hoxb6-lacZ transgene, except for some cells that were derived from the distal part of the posterior epiblast. Lim1 activity may therefore be required for the full expression of this transgene that normally marks the differentiation of the lateral plate and intermediate mesoderm.
Progesterone Receptor Membrane Component 1 (PGRMC1) is expressed in many cancer cells, where it is associated with detrimental patient outcomes. It contains phosphorylated tyrosines which evolutionarily preceded deuterostome gastrulation and tissue differentiation mechanisms. Here, we demonstrate that manipulating PGRMC1 phosphorylation status in MIA PaCa-2 (MP) cells imposes broad pleiotropic effects.Relative to parental cells over-expressing hemagglutinin-tagged wild-type (WT) PGRMC1-HA, cells expressing a PGRMC1-HA-S57A/S181A double mutant (DM) exhibited reduced levels of proteins involved in energy metabolism and mitochondrial function, and altered glucose metabolism suggesting modulation of the Warburg effect.This was associated with increased PI3K/Akt activity, altered cell shape, actin cytoskeleton, motility, and mitochondrial properties. An S57A/Y180F/S181A triple mutant (TM) indicated the involvement of Y180 in PI3K/Akt activation. Mutation of Y180F strongly attenuated mouse xenograft tumor growth. An accompanying paper demonstrates altered metabolism, mutation incidence, and epigenetic status in these cells, indicating that PGRMC1 phosphorylation strongly influences cancer biology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.