Drug discovery faces an efficacy crisis to which ineffective mainly single-target and symptom-based rather than mechanistic approaches have contributed. We here explore a mechanism-based disease definition for network pharmacology. Beginning with a primary causal target, we extend this to a second using guilt-by-association analysis. We then validate our prediction and explore synergy using both cellular in vitro and mouse in vivo models. As a disease model we chose ischemic stroke, one of the highest unmet medical need indications in medicine, and reactive oxygen species forming NADPH oxidase type 4 (Nox4) as a primary causal therapeutic target. For network analysis, we use classical protein–protein interactions but also metabolite-dependent interactions. Based on this protein–metabolite network, we conduct a gene ontology-based semantic similarity ranking to find suitable synergistic cotargets for network pharmacology. We identify the nitric oxide synthase (Nos1to3) gene family as the closest target toNox4. Indeed, when combining a NOS and a NOX inhibitor at subthreshold concentrations, we observe pharmacological synergy as evidenced by reduced cell death, reduced infarct size, stabilized blood–brain barrier, reduced reoxygenation-induced leakage, and preserved neuromotor function, all in a supraadditive manner. Thus, protein–metabolite network analysis, for example guilt by association, can predict and pair synergistic mechanistic disease targets for systems medicine-driven network pharmacology. Such approaches may in the future reduce the risk of failure in single-target and symptom-based drug discovery and therapy.
Nucleotide variants can cause functional changes by altering protein–RNA binding in various ways that are not easy to predict. This can affect processes such as splicing, nuclear shuttling, and stability of the transcript. Therefore, correct modeling of protein–RNA binding is critical when predicting the effects of sequence variations. Many RNA-binding proteins recognize a diverse set of motifs and binding is typically also dependent on the genomic context, making this task particularly challenging. Here, we present DeepCLIP, the first method for context-aware modeling and predicting protein binding to RNA nucleic acids using exclusively sequence data as input. We show that DeepCLIP outperforms existing methods for modeling RNA-protein binding. Importantly, we demonstrate that DeepCLIP predictions correlate with the functional outcomes of nucleotide variants in independent wet lab experiments. Furthermore, we show how DeepCLIP binding profiles can be used in the design of therapeutically relevant antisense oligonucleotides, and to uncover possible position-dependent regulation in a tissue-specific manner. DeepCLIP is freely available as a stand-alone application and as a webtool at http://deepclip.compbio.sdu.dk.
Gene regulatory networks (GRNs) and gene expression data form a core element of systems biology-based phenotyping. Changes in the expression of transcription factors are commonly believed to have a causal effect on the expression of their targets. Here we evaluated in the best researched model organism, Escherichia coli, the consistency between a GRN and a large gene expression compendium. Surprisingly, a modest correlation was observed between the expression of transcription factors and their targets and, most noteworthy, both activating and repressing interactions were associated with positive correlation. When evaluated using a sign consistency model we found the regulatory network was not more consistent with measured expression than random network models. We conclude that, at least in E. coli, one cannot expect a causal relationship between the expression of transcription and factors their targets, and that the current static GRN does not adequately explain transcriptional regulation. The implications of this are profound as they question what we consider established knowledge of the systemic biology of cells and point to methodological limitations with respect to single omics analysis, static networks and temporality.
Canine carcinomas have been considered natural models for human diseases; however, the genomic profile of canine prostate cancers (PCs) has not been explored. In this study, 14 PC androgen-receptor-negative cases, 4 proliferative inflammatory atrophies (PIA), and 5 normal prostate tissues were investigated by array-based comparative genomic hybridization (aCGH). Copy number alterations (CNAs) were assessed using the Canine Genome CGH Microarray 4 × 44K (Agilent Technologies). Genes covered by recurrent CNAs were submitted to enrichment and cross-validation analysis. In addition, the expression levels of TP53, MDM2 and ZBTB4 were evaluated in an independent set of cases by qPCR. PC cases presented genomic complexity, while PIA samples had a small number of CNAs. Recurrent losses covering well-known tumor suppressor genes, such as ATM, BRCA1, CDH1, MEN1 and TP53, were found in PC. The in silico functional analysis showed several cancer-related genes associated with canonical pathways and interaction networks previously described in human PC. The MDM2, TP53, and ZBTB4 copy number alterations were translated into altered expression levels. A cross-validation analysis using The Cancer Genome Atlas (TCGA) database for human PC uncovered similarities between canine and human PCs. Androgen-receptor-negative canine PC is a complex disease characterized by high genomic instability, showing a set of genes with similar alterations to human cancer.
Pre-operative 5-fluoracil-based chemoradiotherapy (nCRT) is the standard treatment for patients with locally advanced rectal cancer (LARC). Patients with pathological complete response (pCR–0% of tumor cells in the surgical specimen after nCRT) have better overall survival and lower risk of recurrence in comparison with incomplete responders (pIR). Predictive biomarkers to be used for new therapeutic strategies and capable of stratifying patients to avoid overtreatment are needed. We evaluated the genomic profiles of 33 pre-treatment LARC biopsies using SNP array and targeted-next generation sequencing (tNGS). Based on the large number of identified genomic alterations, we calculated the genomic instability index (GII) and three homologous recombination deficiency (HRD) scores, which have been reported as impaired DNA repair markers. We observed high GII in our LARC cases, which was confirmed in 165 rectal cancer cases from TCGA. Patients with pCR presented higher GII compared with pIR. Moreover, a negative correlation between GII and the fraction of tumor cells remaining after surgery was observed (ρ = –0.382, P = 0.02). High HRD scores were detected in 61% of LARC, of which 70% were incomplete responders. Using tNGS (105 cancer-related genes, 13 involved in HR and 5 in mismatch repair pathways), we identified 23% of cases with mutations in HR genes, mostly in pIR cases (86% of mutated cases). In agreement, the analysis of the TCGA dataset ( N = 145) revealed 21% of tumors with mutations in HR genes. The HRD scores were shown to be predictive of better response to PARP-inhibitors and platinum-based chemotherapy in breast and ovarian cancer. Our results suggest that the same strategy could be applied in a set of LARC patients with HRD. In conclusion, we identified high genomic instability in LARC, which was related to alterations in the HR pathway, especially in pIR. These findings suggest that patients with impaired HRD would clinically benefit from PARP-inhibitors and platinum-based therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.