The Mobulidae are zooplanktivorous elasmobranchs comprising two recognized species of manta rays (Manta spp.) and nine recognized species of devil rays (Mobula spp.). They are found circumglobally in tropical, subtropical and temperate coastal waters. Although mobulids have been recorded for over 400 years, critical knowledge gaps still compromise the ability to assess the status of these species. On the basis of a review of 263 publications, a comparative synthesis of the biology and ecology of mobulids was conducted to examine their evolution, taxonomy, distribution, population trends, movements and aggregation, reproduction, growth and longevity, feeding, natural mortality and direct and indirect anthropogenic threats. There has been a marked increase in the number of published studies on mobulids since c. 1990, particularly for the genus Manta, although the genus Mobula remains poorly understood. Mobulid species have many common biological characteristics although their ecologies appear to be species‐specific, and sometimes region‐specific. Movement studies suggest that mobulids are highly mobile and have the potential to rapidly travel large distances. Fishing pressure is the major threat to many mobulid populations, with current levels of exploitation in target fisheries unlikely to be sustainable. Advances in the fields of population genetics, acoustic and satellite tracking, and stable‐isotope and fatty‐acid analyses will provide new insights into the biology and ecology of these species. Future research should focus on the uncertain taxonomy of mobulid species, the degree of overlap between their large‐scale movement and human activities such as fisheries and pollution, and the need for management of inter‐jurisdictional fisheries in developing nations to ensure their long‐term sustainability. Closer collaboration among researchers worldwide is necessary to ensure standardized sampling and modelling methodologies to underpin global population estimates and status.
Effective ocean management and conservation of highly migratory species depends onresolving overlap between animal movements and distributions, and fishing effort.However, this information is lacking at a global scale. Here we show, using a big-data approach that combines satellite-tracked movements of pelagic sharks and global fishing fleets, that 24% of the mean monthly space used by sharks falls under the footprint of pelagic longline fisheries. Space-use hotspots of commercially valuable sharks and of internationally protected species had the highest overlap with longlines (up to 76% and 64%, respectively), and were also associated with significant increases in fishing effort.We conclude that pelagic sharks have limited spatial refuge from current levels of fishing effort in marine areas beyond national jurisdictions (the high seas). Our results demonstrate an urgent need for conservation and management measures at high-seas hotspots of shark space use, and highlight the potential of simultaneous satellite surveillance of megafauna and fishers as a tool for near-real-time, dynamic management.Industrialised fishing is a major source of mortality for large marine animals (marine megafauna) 1-6 . Humans have hunted megafauna in the open ocean for at least 42,000 years 7 , but international fishing fleets targeting large, epipelagic fishes did not spread into the high seas (areas beyond national jurisdiction) until the 1950s 8 . Prior to this, the high seas constituted a spatial refuge largely free from exploitation as fishing pressure was concentrated on continental shelves 3,8 . Pelagic sharks are among the widest ranging vertebrates, with some species exhibiting annual ocean-basin-scale migrations 9 , long term trans-ocean movements 10 , and/or fine-scale site fidelity to preferred shelf and open ocean areas 5,9,11 . These behaviours could cause extensive spatial overlap with different fisheries from coastal areas to the deep ocean. On average, large pelagic sharks account for 52% of all identified shark catch worldwide in target fisheries or as bycatch 12 . Regional declines in abundance of pelagic sharks have been reported 13,14 , but it is unclear whether exposure to high fishing effort extends across ocean-wide population ranges and overlaps areas in the high seas where sharks are most abundant 5,13 .Conservation of pelagic sharkswhich currently have limited high seas management 12,15,16would benefit greatly from a clearer understanding of the spatial relationships between sharks' habitats and active fishing zones. However, obtaining unbiased estimates of shark and fisher distributions is complicated by the fact that most data on pelagic sharks come from catch records and other fishery-dependent sources 4,15,16 .Here, we provide the first global estimate of the extent of space use overlap of sharks with industrial fisheries. This is based on the analysis of the movements of pelagic sharks tagged with satellite transmitters in the Atlantic, Indian and Pacific oceans, together with fishing vessel movements m...
Sightings of planktivorous elasmobranchs at their coastal aggregation sites are often linked to biological, environmental and temporal variables. Many large planktivorous elasmobranchs are also globally threatened species, so it is necessary to try and separate population trends from environmentally driven, short-term fluctuations. We investigated the influence of environmental variables on sightings of 3 species of planktivorous elasmobranchs off Praia do Tofo, Mozambique: the reef manta ray Manta alfredi, giant manta ray M. birostris and whale shark Rhincodon typus. We used 8-(2003We used 8-( to 2011We used 8-( ) and 6-yr (2005We used 8-( to 2011 logbook data for manta rays and whale sharks, respectively, and constructed a generalised linear model with animal sightings as the response. Predictors included temporal (year, month, time of day), biological (plankton categories), oceanographic (water temperature, time from high tide, current direction and strength and wave height) and celestial (moon illumination) indices. These predictors best fitted reef manta ray sightings, a coastal species with high residency, but less so for the wider-ranging giant manta rays and whale sharks. We found a significant decline in the standardised sightings time series for the reef manta ray (88%) and whale shark (79%), but not for the giant manta ray.
The Pladias (Plant Diversity Analysis and Synthesis) Database of the Czech Flora and Vegetation was developed by the Pladias project team in 2014-2018 and has been continuously updated since then. The flora section of the database contains critically revised information on the Czech vascular flora, including 13.6 million plant occurrence records, which are dynamically displayed in maps, and data on 120 plant characteristics (traits, environmental associations and other information), divided into the sections: (1) Habitus and growth type, (2) Leaf, (3) Flower, (4) Fruit, seed and dispersal, (5) Belowground organs and clonality, (6) Trophic mode, (7) Karyology, (8) Taxon origin, (9) Ecological indicator values, (10) Habitat and sociology, (11) Distribution and frequency, and (12) Threats and protection. The vegetation section of the database contains information on Czech vegetation types extracted from the monograph Vegetation of the Czech Republic. The data are supplemented by national botanical bibliographies, electronic versions of the standard national flora and vegetation monographs, a database of more than 19,000 pictures of plant taxa and vegetation types, and digital maps (shapefiles) with botanical information. The data from the database are available online on a public portal www.pladias.cz, which also provides download options for various datasets and online identification keys to the species and vegetation types of the Czech Republic. In this paper, we describe the general scope, structure and content of the database, and details of the data on plant characteristics. To illustrate the data and describe the main geographic patterns in selected plant characteristics, we provide maps of mean values of numerical characteristics or proportions of categories for categorical characteristics on the map of the country in a grid of 5 longitudinal × 3 latitudinal minutes (approximately 6.0 km × 5.5 km). We also summarize the main variation patterns in the functional traits in the Czech flora using the principal component analysis.
This study presents genetic evidence that whale sharks, Rhincodon typus, are comprised of at least two populations that rarely mix and is the first to document a population expansion. Relatively high genetic structure is found when comparing sharks from the Gulf of Mexico with sharks from the Indo-Pacific. If mixing occurs between the Indian and Atlantic Oceans, it is not sufficient to counter genetic drift. This suggests whale sharks are not all part of a single global metapopulation. The significant population expansion we found was indicated by both microsatellite and mitochondrial DNA. The expansion may have happened during the Holocene, when tropical species could expand their range due to sea-level rise, eliminating dispersal barriers and increasing plankton productivity. However, the historic trend of population increase may have reversed recently. Declines in genetic diversity are found for 6 consecutive years at Ningaloo Reef in Australia. The declines in genetic diversity being seen now in Australia may be due to commercial-scale harvesting of whale sharks and collision with boats in past decades in other countries in the Indo-Pacific. The study findings have implications for models of population connectivity for whale sharks and advocate for continued focus on effective protection of the world's largest fish at multiple spatial scales.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.