This paper introduces Farkas certificates for lower and upper bounds on minimal and maximal reachability probabilities in Markov decision processes (MDP), which we derive using an MDP-variant of Farkas' Lemma. The set of all such certificates is shown to form a polytope whose points correspond to witnessing subsystems of the model and the property. This allows translating the problem of finding minimal witnesses to the problem of finding vertices with a maximal number of zeros. While computing such vertices is computationally hard in general, we derive new heuristics from our formulations that exhibit competitive performance compared to state-of-the-art techniques and apply to more situations. As an argument that asymptotically better algorithms cannot be hoped for, we show that the decision version of finding minimal witnesses is NP-complete even for acyclic Markov chains.
We present a causality-based algorithm for solving two-player reachability games represented by logical constraints. These games are a useful formalism to model a wide array of problems arising, e.g., in program synthesis. Our technique for solving these games is based on the notion of subgoals, which are slices of the game that the reachability player necessarily needs to pass through in order to reach the goal. We use Craig interpolation to identify these necessary sets of moves and recursively slice the game along these subgoals. Our approach allows us to infer winning strategies that are structured along the subgoals. If the game is won by the reachability player, this is a strategy that progresses through the subgoals towards the final goal; if the game is won by the safety player, it is a permissive strategy that completely avoids a single subgoal. We evaluate our prototype implementation on a range of different games. On multiple benchmark families, our prototype scales dramatically better than previously available tools.
We aim at measuring the influence of the nondeterministic choices of a part of a system on its ability to satisfy a specification. For this purpose, we apply the concept of Shapley values to verification as a means to evaluate how important a part of a system is. The importance of a component is measured by giving its control to an adversary, alone or along with other components, and testing whether the system can still fulfill the specification. We study this idea in the framework of modelchecking with various classical types of linear-time specification, and propose several ways to transpose it to branching ones. We also provide tight complexity bounds in almost every case.
A standard way of justifying that a certain probabilistic property holds in a system is to provide a witnessing subsystem (also called critical subsystem) for the property. Computing minimal witnessing subsystems is NP-hard already for acyclic Markov chains, but can be done in polynomial time for Markov chains whose underlying graph is a tree. This paper considers the problem for probabilistic systems that are similar to trees or paths. It introduces the parameters directed tree-partition width (dtpw) and directed path-partition width (dppw) and shows that computing minimal witnesses remains NP-hard for Markov chains with bounded dppw (and hence also for Markov chains with bounded dtpw). By observing that graphs of bounded dtpw have bounded width with respect to all known tree similarity measures for directed graphs, the hardness result carries over to these other tree similarity measures. Technically, the reduction proceeds via the conceptually simpler matrix-pair chain problem, which is introduced and shown to be NP-complete for nonnegative matrices of fixed dimension. Furthermore, an algorithm which aims to utilise a given directed tree partition of the system to compute a minimal witnessing subsystem is described. It enumerates partial subsystems for the blocks of the partition along the tree order, and keeps only necessary ones. A preliminary experimental analysis shows that it outperforms other approaches on certain benchmarks which have directed tree partitions of small width.
In view of the growing complexity of modern software architectures, formal models are increasingly used to understand why a system works the way it does, opposed to simply verifying that it behaves as intended. This paper surveys approaches to formally explicate the observable behavior of reactive systems. We describe how Halpern and Pearl's notion of actual causation inspired verificationoriented studies of cause-effect relationships in the evolution of a system. A second focus lies on applications of the Shapley value to responsibility ascriptions, aimed to measure the influence of an event on an observable effect. Finally, formal approaches to probabilistic causation are collected and connected, and their relevance to the understanding of probabilistic systems is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.