Spontaneous intracranial artery dissection is an uncommon and probably underdiagnosed cause of stroke that is defi ned by the occurrence of a haematoma in the wall of an intracranial artery. Patients can present with headache, ischaemic stroke, subarachnoid haemorrhage, or symptoms associated with mass eff ect, mostly on the brainstem. Although intracranial artery dissection is less common than cervical artery dissection in adults of European ethnic origin, intracranial artery dissection is reportedly more common in children and in Asian populations. Risk factors and mechanisms are poorly understood, and diagnosis is challenging because characteristic imaging features can be diffi cult to detect in view of the small size of intracranial arteries. Therefore, multimodal follow-up imaging is often needed to confi rm the diagnosis. Treatment of intracranial artery dissections is empirical in the absence of data from randomised controlled trials. Most patients with subarachnoid haemorrhage undergo surgical or endovascular treatment to prevent rebleeding, whereas patients with intracranial artery dissection and cerebral ischaemia are treated with antithrombotics. Prognosis seems worse in patients with subarachnoid haemorrhage than in those without.
BackgroundReported frequency of post-stroke dysphagia in the literature is highly variable. In view of progress in stroke management, we aimed to assess the current burden of dysphagia in acute ischemic stroke.MethodsWe studied 570 consecutive patients treated in a tertiary stroke center. Dysphagia was evaluated by using the Gugging Swallowing Screen (GUSS). We investigated the relationship of dysphagia with pneumonia, length of hospital stay and discharge destination and compared rates of favourable clinical outcome and mortality at 3 months between dysphagic patients and those without dysphagia.ResultsDysphagia was diagnosed in 118 of 570 (20.7%) patients and persisted in 60 (50.9%) at hospital discharge. Thirty-six (30.5%) patients needed nasogastric tube because of severe dysphagia. Stroke severity rather than infarct location was associated with dysphagia. Dysphagic patients suffered more frequently from pneumonia (23.1% vs. 1.1%, p<0.001), stayed longer at monitored stroke unit beds (4.4±2.8 vs. 2.7±2.4 days; p<0.001) and were less often discharged to home (19.5% vs. 63.7%, p = 0.001) as compared to those without dysphagia. At 3 months, dysphagic patients less often had a favourable outcome (35.7% vs. 69.7%; p<0.001), less often lived at home (38.8% vs. 76.5%; p<0.001), and more often had died (13.6% vs. 1.6%; p<0.001). Multivariate analyses identified dysphagia to be an independent predictor of discharge destination and institutionalization at 3 months, while severe dysphagia requiring tube placement was strongly associated with mortality.ConclusionDysphagia still affects a substantial portion of stroke patients and may have a large impact on clinical outcome, mortality and institutionalization.
Background and Purpose— There is some controversy on the association of the National Institutes of Health Stroke Scale (NIHSS) score to predict arterial occlusion on MR arteriography and CT arteriography in acute stroke. Methods— We analyzed NIHSS scores and arteriographic findings in 2152 patients (35.4% women, mean age 66±14 years) with acute anterior or posterior circulation strokes. Results— The study included 1603 patients examined with MR arteriography and 549 with CT arteriography. Of those, 1043 patients (48.5%; median NIHSS score 5, median time to clinical assessment 179 minutes) showed an occlusion, 887 in the anterior (median NIHSS score 7/0–31), and 156 in the posterior circulation (median NIHSS score 3/0–32). Eight hundred sixty visualized occlusions (82.5%) were located centrally (ie, in the basilar, intracranial vertebral, internal carotid artery, or M1/M2 segment of the middle cerebral artery). NIHSS scores turned out to be predictive for any vessel occlusions in the anterior circulation. Best cut-off values within 3 hours after symptom onset were NIHSS scores ≥9 (positive predictive value 86.4%) and NIHSS scores ≥7 within >3 to 6 hours (positive predictive value 84.4%). Patients with central occlusions presenting within 3 hours had NIHSS scores <4 in only 5%. In the posterior circulation and in patients presenting after 6 hours, the predictive value of the NIHSS score for vessel occlusion was poor. Conclusions— There is a significant association of NIHSS scores and vessel occlusions in patients with anterior circulation strokes. This association is best within the first hours after symptom onset. Thereafter and in the posterior circulation the association is poor.
The goal of acute stroke treatment with intravenous thrombolysis or endovascular recanalization techniques is to rescue the penumbral tissue. Therefore, knowing the factors that influence the loss of penumbral tissue is of major interest. In this study we aimed to identify factors that determine the evolution of the penumbra in patients with proximal (M1 or M2) middle cerebral artery occlusion. Among these factors collaterals as seen on angiography were of special interest. Forty-four patients were included in this analysis. They had all received endovascular therapy and at least minimal reperfusion was achieved. Their penumbra was assessed with perfusion- and diffusion-weighted imaging. Perfusion-weighted imaging volumes were defined by circular singular value decomposition deconvolution maps (Tmax > 6 s) and results were compared with volumes obtained with non-deconvolved maps (time to peak > 4 s). Loss of penumbral volume was defined as difference of post- minus pretreatment diffusion-weighted imaging volumes and calculated in per cent of pretreatment penumbral volume. Correlations between baseline characteristics, reperfusion, collaterals, time to reperfusion and penumbral volume loss were assessed using analysis of covariance. Collaterals (P = 0.021), reperfusion (P = 0.003) and their interaction (P = 0.031) independently influenced penumbral tissue loss, but not time from magnetic resonance (P = 0.254) or from symptom onset (P = 0.360) to reperfusion. Good collaterals markedly slowed down and reduced the penumbra loss: in patients with thrombolysis in cerebral infarction 2 b-3 reperfusion and without any haemorrhage, 27% of the penumbra was lost with 8.9 ml/h with grade 0 collaterals, whereas 11% with 3.4 ml/h were lost with grade 1 collaterals. With grade 2 collaterals the penumbral volume change was -2% with -1.5 ml/h, indicating an overall diffusion-weighted imaging lesion reversal. We conclude that collaterals and reperfusion are the main factors determining loss of penumbral tissue in patients with middle cerebral artery occlusions. Collaterals markedly reduce and slow down penumbra loss. In patients with good collaterals, time to successful reperfusion accounts only for a minor fraction of penumbra loss. These results support the hypothesis that good collaterals extend the time window for acute stroke treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.