Abstract. In this review, we seek to develop new insights about the nature of algal‐sea anemone symbioses by comparing such associations in temperate and tropical seas. Temperate seas undergo pronounced seasonal cycles in irradiance, temperature, and nutrients, while high irradiance, high temperature, and low nutrients are seasonally far less variable in tropical seas. We compare the nature of symbiosis between sea anemones (= actinians) and zooxanthellae (Symbiodinium spp.) in both regions to test tropical paradigms against temperate examples and to identify directions for future research. Although fewer anemone species are symbiotic in temperate regions, they are locally dominant and ecologically important members of the benthic community compared to the tropics. Zooxanthella densities tend to be lower in temperate anemones, but data are limited to a few species in both temperate and tropical seas. Zooxanthella densities are far more stable over time in temperate anemones than in tropical anemones, suggesting that temperate symbioses are more resistant to fluctuations in environmental parameters such as irradiance and temperature. Light‐saturated photosynthetic rates of temperate and tropical zooxanthellae are similar, but temperate anemone hosts receive severely reduced carbon supplies from zooxanthellae during winter months when light is reduced. Symbiont transmission modes and specificity do not show any trends among anemones in tropical vs. temperate seas. Our review indicates the need for the following: (1) Investigations of other temperate and tropical symbiotic anemone species to assess the generality of trends seen in a few “model’ anemones. (2) Attention to the field ecology of temperate and tropical algal‐anemone symbioses, for example, how symbioses function under seasonally variable environmental factors and how zooxanthellae persist at high densities in darkness and winter. The greater stability of zooxanthella populations in temperate hosts may be useful to understanding tropical symbioses in which bleaching (loss of zooxanthellae) is of major concern. (3) Study of the evolutionary history of symbiosis in both temperate and tropical seas. Continued exploration of the phylogenetic relationships between host anemones and zooxanthella strains may show how and why zooxanthellae differ in anemone hosts in both environments.
The genus Symbiodinium is physiologically diverse and so may differentially influence symbiosis establishment and function. To explore this, we inoculated aposymbiotic individuals of the sea anemone Exaiptasia pallida (commonly referred to as "Aiptasia"), a model for coral symbiosis, with one of five Symbiodinium species or types (S. microadriaticum, S. minutum, phylotype C3, S. trenchii, or S. voratum). The spatial pattern of colonization was monitored over time via confocal microscopy, and various physiological parameters were measured to assess symbiosis functionality. Anemones rapidly formed a symbiosis with the homologous symbiont, S. minutum, but struggled or failed to form a long-lasting symbiosis with Symbiodinium C3 or S. voratum, respectively. Symbiodinium microadriaticum and S. trenchii were successful but reached their peak density two weeks after S. minutum. The spatial pattern of colonization was identical for all Symbiodinium taxa that were ultimately successful, starting in the oral disk and progressing to the tentacles, before invading the column and, finally, the pedal disk. In all cases, proliferation through the anemone's tentacles was patchy, suggesting that symbionts were being expelled into the gastrovascular cavity and re-phagocytosed by the host. However, the timing of these various spatial events differed between the different Symbiodinium taxa. Furthermore, S. microadriaticum and S. trenchii were less beneficial to the host, as indicated by lower rates of photosynthesis, anemone growth, and pedal laceration. This study enhances our understanding of the link between symbiont identity and the performance of the overall symbiosis, which is important for understanding the potential establishment and persistence of novel host-symbiont pairings. Importantly, we also provide a baseline for further studies on this topic with the globally adopted "Aiptasia" model system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.