Historically, medical imaging has been a qualitative or semi-quantitative modality. It is difficult to quantify what can be seen in an image, and to turn it into valuable predictive outcomes. As a result of advances in both computational hardware and machine learning algorithms, computers are making great strides in obtaining quantitative information from imaging and correlating it with outcomes. Radiomics, in its two forms “handcrafted and deep,” is an emerging field that translates medical images into quantitative data to yield biological information and enable radiologic phenotypic profiling for diagnosis, theragnosis, decision support, and monitoring. Handcrafted radiomics is a multistage process in which features based on shape, pixel intensities, and texture are extracted from radiographs. Within this review, we describe the steps: starting with quantitative imaging data, how it can be extracted, how to correlate it with clinical and biological outcomes, resulting in models that can be used to make predictions, such as survival, or for detection and classification used in diagnostics. The application of deep learning, the second arm of radiomics, and its place in the radiomics workflow is discussed, along with its advantages and disadvantages. To better illustrate the technologies being used, we provide real-world clinical applications of radiomics in oncology, showcasing research on the applications of radiomics, as well as covering its limitations and its future direction.
Precision medicine is the future of health care: please watch the animation at https://vimeo.com/241154708. As a technology-intensive and -dependent medical discipline, oncology will be at the vanguard of this impending change. However, to bring about precision medicine, a fundamental conundrum must be solved: Human cognitive capacity, typically constrained to five variables for decision making in the context of the increasing number of available biomarkers and therapeutic options, is a limiting factor to the realization of precision medicine. Given this level of complexity and the restriction of human decision making, current methods are untenable. A solution to this challenge is multifactorial decision support systems (DSSs), continuously learning artificial intelligence platforms that integrate all available data—clinical, imaging, biologic, genetic, cost—to produce validated predictive models. DSSs compare the personalized probable outcomes—toxicity, tumor control, quality of life, cost effectiveness—of various care pathway decisions to ensure optimal efficacy and economy. DSSs can be integrated into the workflows both strategically (at the multidisciplinary tumor board level to support treatment choice, eg, surgery or radiotherapy) and tactically (at the specialist level to support treatment technique, eg, prostate spacer or not). In some countries, the reimbursement of certain treatments, such as proton therapy, is already conditional on the basis that a DSS is used. DSSs have many stakeholders—clinicians, medical directors, medical insurers, patient advocacy groups—and are a natural consequence of big data in health care. Here, we provide an overview of DSSs, their challenges, opportunities, and capacity to improve clinical decision making, with an emphasis on the utility in oncology.
The growing complexity and volume of clinical data and the associated decision-making processes in oncology promote the advent of precision medicine. Precision (or personalised) medicine describes preventive and/or treatment procedures that take individual patient variability into account when proscribing treatment, and has been hindered in the past by the strict requirements of accurate, robust, repeatable and preferably non-invasive biomarkers to stratify both the patient and the disease. In oncology, tumour subtypes are traditionally measured through repeated invasive biopsies, which are taxing for the patient and are cost and labour intensive. Quantitative analysis of routine clinical imaging provides an opportunity to capture tumour heterogeneity non-invasively, cost-effectively and on large scale. In current clinical practice radiological images are qualitatively analysed by expert radiologists whose interpretation is known to suffer from inter- and intra-operator variability. Radiomics, the high-throughput mining of image features from medical images, provides a quantitative and robust method to assess tumour heterogeneity, and radiomics-based signatures provide a powerful tool for precision medicine in cancer treatment. This study aims to provide an overview of the current state of radiomics as a precision medicine decision support tool. We first provide an overview of the requirements and challenges radiomics currently faces in being incorporated as a tool for precision medicine, followed by an outline of radiomics' current applications in the treatment of various types of cancer. We finish with a discussion of possible future advances that can further develop radiomics as a precision medicine tool.
A major challenge in radiomics is assembling data from multiple centers. Sharing data between hospitals is restricted by legal and ethical regulations. Distributed learning is a technique, enabling training models on multicenter data without data leaving the hospitals ("privacy-preserving" distributed learning). This study tested feasibility of distributed learning of radiomics data for prediction of two year overall survival and HPV status in head and neck cancer (HNC) patients. Pretreatment CT images were collected from 1174 HNC patients in 6 different cohorts. 981 radiomic features were extracted using Z-Rad software implementation. Hierarchical clustering was performed to preselect features. Classification was done using logistic regression. In the validation dataset, the receiver operating characteristics (Roc) were compared between the models trained in the centralized and distributed manner. No difference in ROC was observed with respect to feature selection. The logistic regression coefficients were identical between the methods (absolute difference <10 −7). In comparison of the full workflow (feature selection and classification), no significant difference in ROC was found between centralized and distributed models for both studied endpoints (DeLong p > 0.05). In conclusion, both feature selection and classification are feasible in a distributed manner using radiomics data, which opens new possibility for training more reliable radiomics models.
Detection and segmentation of abnormalities on medical images is highly important for patient management including diagnosis, radiotherapy, response evaluation, as well as for quantitative image research. We present a fully automated pipeline for the detection and volumetric segmentation of non-small cell lung cancer (NSCLC) developed and validated on 1328 thoracic CT scans from 8 institutions. Along with quantitative performance detailed by image slice thickness, tumor size, image interpretation difficulty, and tumor location, we report an in-silico prospective clinical trial, where we show that the proposed method is faster and more reproducible compared to the experts. Moreover, we demonstrate that on average, radiologists & radiation oncologists preferred automatic segmentations in 56% of the cases. Additionally, we evaluate the prognostic power of the automatic contours by applying RECIST criteria and measuring the tumor volumes. Segmentations by our method stratified patients into low and high survival groups with higher significance compared to those methods based on manual contours.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.