Foxp3-positive regulatory T cells (Tregs) are crucial for the maintenance of immune homeostasis and keep immune responses in check. Upon activation, Tregs are transferred into an effector state expressing transcripts essential for their suppressive activity, migration, and survival. However, it is not completely understood how different intrinsic and environmental factors control differentiation. Here, we present for the first time to our knowledge data suggesting that Treg-intrinsic expression of CD83 is essential for Treg differentiation upon activation. Interestingly, mice with Treg-intrinsic CD83 deficiency are characterized by a proinflammatory phenotype. Furthermore, the loss of CD83 expression by Tregs leads to the downregulation of Treg-specific differentiation markers and the induction of an inflammatory profile. In addition, Treg-specific conditional knockout mice showed aggravated autoimmunity and an impaired resolution of inflammation. Altogether, our results show that CD83 expression in Tregs is an essential factor for the development and function of effector Tregs upon activation. Since Tregs play a crucial role in the maintenance of immune tolerance and thus prevention of autoimmune disorders, our findings are also clinically relevant.
The physiological balance between pro- and anti-inflammatory processes is dysregulated in inflammatory bowel diseases (IBD) as in Crohn's disease and ulcerative colitis. Conventional therapy uses anti-inflammatory and immunosuppressive corticosteroids to treat acute-phase symptoms. However, low remission rate and strong side effects of these therapies are not satisfying. Thus, there is a high medical need for new therapeutic strategies. Soluble CD83, the extracellular domain of the transmembrane CD83 molecule, has been reported to have interesting therapeutic and immunosuppressive properties by suppressing dendritic cell (DC)-mediated T-cell activation and inducing tolerogenic DCs. However, the expression and function of CD83 in IBD is still unknown. Here, we show that CD83 expression is upregulated by different leukocyte populations in a chemical-induced murine colitis model. Furthermore, in this study the potential of sCD83 to modulate colitis using an experimental murine colitis model was investigated. Strikingly, sCD83 ameliorated the clinical disease symptoms, drastically reduced mortality, and strongly decreased inflammatory cytokine expression in mesenteric lymph nodes and colon. The infiltration of macrophages and granulocytes into colonic tissues was vigorously inhibited. Mechanistically, we could show that sCD83-induced expression of indolamine 2,3-dioxygenase is essential for its protective effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.