Three bosons with large scattering length show universal properties that do not depend on the details of the interaction at short distances. In the three-boson system, these properties include a geometric spectrum of shallow three-body states called "Efimov states" and log-periodic dependence of scattering observables on the scattering length. We investigate the modification of the Efimov states in a finite cubic box and calculate the dependence of their energies on the box size using effective field theory. We explicitly verify the renormalization of the effective field theory in the finite volume.
Understanding the volume dependence of the triton binding energy is an important step towards lattice simulations of light nuclei. We calculate the triton binding energy in a finite cubic box with periodic boundary conditions to leading order in the pionless effective field theory. Higher order corrections are estimated and the proper renormalization of our results is verified explicitly. We present results for the physical triton as well as for the pion-mass dependence of the triton spectrum near the ``critical'' pion mass, Mpi_c ~ 197 MeV, where chiral effective field theory suggests that the nucleon-nucleon scattering lengths in the singlet- and triplet-channels diverge simultaneously. An extension of the Luescher formula to the three-body system is implicit in our results.Comment: 11 pages, 4 figure
Three particles with large scattering length display a universal spectrum of three-body bound states called "Efimov trimers". We calculate the modification of the Efimov trimers of three identical bosons in a finite cubic box and compute the dependence of their energies on the box size using effective field theory. Previous calculations for positive scattering length that were perturbative in the finite volume energy shift are extended to arbitrarily large shifts and negative scattering lengths. The renormalization of the effective field theory in the finite volume is explicitly verified. We investigate the effects of partial wave mixing and study the behavior of shallow trimers near the dimer energy. Moreover, we provide numerical evidence for universal scaling of the finite volume corrections.
We investigate spin-dependent transport through an epitaxial GaAs(001) barrier sandwiched between polycrystalline iron films. Electron transport through the barrier is dominated by quantum mechanical tunneling, demonstrated by a nonlinear I–V characteristic, an exponential dependence of the tunneling current on the barrier thickness and the temperature dependence of the current. Though small a clear tunneling magnetoresistance effect proves spin-dependent transport through the Fe–GaAs interface. The small size of the effect and the high-field magnetoresistance suggest that spin–flip scattering plays a decisive role in transport.
Lattice simulations of light nuclei necessarily take place in finite volumes, thus affecting their infrared properties. These effects can be addressed in a model-independent manner using Effective Field Theories. We study the model case of three identical bosons (mass m) with resonant two-body interactions in a cubic box with periodic boundary conditions, which can also be generalized to the three-nucleon system in a straightforward manner. Our results allow for the removal of finite volume effects from lattice results as well as the determination of infinite volume scattering parameters from the volume dependence of the spectrum. We study the volume dependence of several states below the break-up threshold, spanning one order of magnitude in the binding energy in the infinite volume, for box side lengths L between the two-body scattering length a and L = 0.25a. For example, a state with a three-body energy of −3/(ma 2 ) in the infinite volume has been shifted to −10/(ma 2 ) at L = a. Special emphasis is put on the consequences of the breakdown of spherical symmetry and several ways to perturbatively treat the ensuing partial wave admixtures. We find their contributions to be on the sub-percent level compared to the strong volume dependence of the S-wave component. For shallow bound states, we find a transition to boson-diboson scattering behavior when decreasing the size of the finite volume.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.