Segregation of information flow along a dorsally directed pathway for processing object location and a ventrally directed pathway for processing object identity is well established in the visual and auditory systems, but is less clear in the somatosensory system. We hypothesized that segregation of location vs. identity information in touch would be evident if texture is the relevant property for stimulus identity, given the salience of texture for touch. Here, we used functional magnetic resonance imaging (fMRI) to investigate whether the pathways for haptic and visual processing of location and texture are segregated, and the extent of bisensory convergence. Haptic texture-selectivity was found in the parietal operculum and posterior visual cortex bilaterally, and in parts of left inferior frontal cortex. There was bisensory texture-selectivity at some of these sites in posterior visual and left inferior frontal cortex. Connectivity analyses demonstrated, in each modality, flow of information from unisensory non-selective areas to modality-specific texture-selective areas and further to bisensory texture-selective areas. Location-selectivity was mostly bisensory, occurring in dorsal areas, including the frontal eye fields and multiple regions around the intraparietal sulcus bilaterally. Many of these regions received input from unisensory areas in both modalities. Together with earlier studies, the activation and connectivity analyses of the present study establish that somatosensory processing flows into segregated pathways for location and object identity information. The location-selective somatosensory pathway converges with its visual counterpart in dorsal frontoparietal cortex, while the texture-selective somatosensory pathway runs through the parietal operculum before converging with its visual counterpart in visual and frontal cortex. Both segregation of sensory processing according to object property and multisensory convergence appear to be universal organizing principles.
A recent study showed that people evaluate products more positively when they are physically associated with art images than similar non-art images. Neuroimaging studies of visual art have investigated artistic style and esthetic preference but not brain responses attributable specifically to the artistic status of images. Here we tested the hypothesis that the artistic status of images engages reward circuitry, using event-related functional magnetic resonance imaging (fMRI) during viewing of art and non-art images matched for content. Subjects made animacy judgments in response to each image. Relative to non-art images, art images activated, on both subject-and item-wise analyses, reward-related regions: the ventral striatum, hypothalamus and orbitofrontal cortex. Neither response times nor ratings of familiarity or esthetic preference for art images correlated significantly with activity that was selective for art images, suggesting that these variables were not responsible for the art-selective activations. Investigation of effective connectivity, using time-varying, wavelet-based, correlation-purged Granger causality analyses, further showed that the ventral striatum was driven by visual cortical regions when viewing art images but not non-art images, and was not driven by regions that correlated with esthetic preference for either art or non -art images. These findings are consistent with our hypothesis, Corresponding author: K. Sathian, Department of Neurology, Emory University School of Medicine, WMB-6000, 101 Woodruff Circle, Atlanta GA 30322, USA, Tel: 404-727-1366, Fax: 404-727-3157, krish.sathian@emory.edu. Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. NIH Public Access Author ManuscriptNeuroimage. Author manuscript; available in PMC 2012 March 1.
BackgroundPrevious research suggests that visual and haptic object recognition are viewpoint-dependent both within- and cross-modally. However, this conclusion may not be generally valid as it was reached using objects oriented along their extended y-axis, resulting in differential surface processing in vision and touch. In the present study, we removed this differential by presenting objects along the z-axis, thus making all object surfaces more equally available to vision and touch.Methodology/Principal FindingsParticipants studied previously unfamiliar objects, in groups of four, using either vision or touch. Subsequently, they performed a four-alternative forced-choice object identification task with the studied objects presented in both unrotated and rotated (180° about the x-, y-, and z-axes) orientations. Rotation impaired within-modal recognition accuracy in both vision and touch, but not cross-modal recognition accuracy. Within-modally, visual recognition accuracy was reduced by rotation about the x- and y-axes more than the z-axis, whilst haptic recognition was equally affected by rotation about all three axes. Cross-modal (but not within-modal) accuracy correlated with spatial (but not object) imagery scores.Conclusions/SignificanceThe viewpoint-independence of cross-modal object identification points to its mediation by a high-level abstract representation. The correlation between spatial imagery scores and cross-modal performance suggest that construction of this high-level representation is linked to the ability to perform spatial transformations. Within-modal viewpoint-dependence appears to have a different basis in vision than in touch, possibly due to surface occlusion being important in vision but not touch.
This review surveys the recent literature on visuo-haptic convergence in the perception of object form, with particular reference to the lateral occipital complex (LOC) and the intraparietal sulcus (IPS) and discusses how visual imagery or multisensory representations might underlie this convergence. Drawing on a recent distinction between object- and spatially-based visual imagery, we propose a putative model in which LOtv, a subregion of LOC, contains a modality-independent representation of geometric shape that can be accessed either bottom-up from direct sensory inputs or top-down from frontoparietal regions. We suggest that such access is modulated by object familiarity: spatial imagery may be more important for unfamiliar objects and involve IPS foci in facilitating somatosensory inputs to the LOC; by contrast, object imagery may be more critical for familiar objects, being reflected in prefrontal drive to the LOC.
Although visual cortical engagement in haptic shape perception is well established, its relationship with visual imagery remains controversial. We addressed this using functional magnetic resonance imaging during separate visual object imagery and haptic shape perception tasks. Two experiments were conducted. In the first experiment, the haptic shape task employed unfamiliar, meaningless objects, whereas familiar objects were used in the second experiment. The activations evoked by visual object imagery overlapped more extensively, and their magnitudes were more correlated, with those evoked during haptic shape perception of familiar, compared to unfamiliar, objects. In the companion paper (Deshpande et al., 2009), we used task-specific functional and effective connectivity analyses to provide convergent evidence: these analyses showed that the neural networks underlying visual imagery were similar to those underlying haptic shape perception of familiar, but not unfamiliar, objects. We conclude that visual object imagery is more closely linked to haptic shape perception when objects are familiar, compared to when they are unfamiliar.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.