The purpose of this study was to develop an understanding of the current state of scientific data sharing that stakeholders could use to develop and implement effective data sharing strategies and policies. The study developed a conceptual model to describe the process of data sharing, and the drivers, barriers, and enablers that determine stakeholder engagement. The conceptual model was used as a framework to structure discussions and interviews with key members of all stakeholder groups. Analysis of data obtained from interviewees identified a number of themes that highlight key requirements for the development of a mature data sharing culture.
Abstract. The SOAP (Study of Open Access Publishing) project has analyzed the current supply and demand situation in the open access journal landscape. Starting from the Directory of Open Access Journals, several sources of data were considered, including journal websites and direct inquiries within the publishing industry to comprehensively map the present supply of online peer-reviewed OA journals. The demand for open access publishing is summarised, as assessed through a large-scale survey of researchers' opinions and attitudes. Some forty thousand answers were collected across disciplines and around the world, reflecting major support for the idea of open access, while highlighting drivers of and barriers to open access publishing.
‘Big Science’ - that is, science which involves large collaborations with dedicated facilities, and involving large data volumes and multinational investments – is often seen as different when it comes to data management and preservation planning. Big Science handles its data differently from other disciplines and has data management problems that are qualitatively different from other disciplines. In part, these differences arise from the quantities of data involved, but possibly more importantly from the cultural, organisational and technical distinctiveness of these academic cultures. Consequently, the data management systems are typically and rationally bespoke, but this means that the planning for data management and preservation (DMP) must also be bespoke.These differences are such that ‘just read and implement the OAIS specification’ is reasonable Data Management and Preservation (DMP) advice, but this bald prescription can and should be usefully supported by a methodological ‘toolkit’, including overviews, case-studies and costing models to provide guidance on developing best practice in DMP policy and infrastructure for these projects, as well as considering OAIS validation, audit and cost modelling.In this paper, we build on previous work with the LIGO collaboration to consider the role of DMP planning within these big science scenarios, and discuss how to apply current best practice. We discuss the result of the MaRDI-Gross project (Managing Research Data Infrastructures – Big Science), which has been developing a toolkit to provide guidelines on the application of best practice in DMP planning within big science projects. This is targeted primarily at projects’ engineering managers, but intending also to help funders collaborate on DMP plans which satisfy the requirements imposed on them.
The TELEMAC project brings new methodologies from the Information and Science Technologies field to the world of water treatment. TELEMAC offers an advanced remote management system which adapts to most of the anaerobic wastewater treatment plants that do not benefit from a local expert in wastewater treatment. The TELEMAC system takes advantage of new sensors to better monitor the process dynamics and to run automatic controllers that stabilise the treatment plant, meet the depollution requirements and provide a biogas quality suitable for cogeneration. If the automatic system detects a failure which cannot be solved automatically or locally by a technician, then an expert from the TELEMAC Control Centre is contacted via the internet and manages the problem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.