Aim Glycogen particles are found in different subcellular localizations, which are utilized heterogeneously in different fibre types during endurance exercise. Although resistance exercise typically involves only a moderate use of mixed muscle glycogen, the hypothesis of the present study was that high‐volume heavy‐load resistance exercise would mediate a pattern of substantial glycogen depletion in specific subcellular localizations and fibre types. Methods 10 male elite weightlifters performed resistance exercise consisting of four sets of five (4 × 5) repetitions at 75% of 1RM back squats, 4 × 5 at 75% of 1RM deadlifts and 4 × 12 at 65% of 1RM rear foot elevated split squats. Muscle biopsies (vastus lateralis) were obtained before and after the exercise session. The volumetric content of intermyofibrillar (between myofibrils), intramyofibrillar (within myofibrils) and subsarcolemmal glycogen was assessed by transmission electron microscopy. Results After exercise, biochemically determined muscle glycogen decreased by 38 (31:45)%. Location‐specific glycogen analyses revealed in type 1 fibres a large decrement in intermyofibrillar glycogen, but no or only minor changes in intramyofibrillar or subsarcolemmal glycogen. In type 2 fibres, large decrements in glycogen were observed in all subcellular localizations. Notably, a substantial fraction of the type 2 fibres demonstrated near‐depleted levels of intramyofibrillar glycogen after the exercise session. Conclusion Heavy resistance exercise mediates a substantial utilization of glycogen from all three subcellular localization in type 2 fibres, while mostly taxing intermyofibrillar glycogen stores in type 1 fibres. Thus, a better understanding of the impact of resistance training on myocellular metabolism and performance requires a focus on compartmentalized glycogen utilization.
Mitochondria are the cellular organelles responsible for resynthesising the majority of ATP. In skeletal muscle, there is an increased ATP turnover during resistance exercise to sustain the energetic demands of muscle contraction. Despite this, little is known regarding the mitochondrial characteristics of chronically strength-trained individuals and any potential pathways regulating the strength-specific mitochondrial remodelling. Here, we investigated the mitochondrial structural characteristics in skeletal muscle of strength athletes and age-matched untrained controls. The mitochondrial pool in strength athletes was characterised by increased mitochondrial cristae density, decreased mitochondrial size, and increased surface-to-volume ratio, despite similar mitochondrial volume density. We also provide a fibre-type and compartment specific assessment of mitochondria morphology in human skeletal muscle, which reveals across groups a compartment-specific influence on mitochondrial morphology that is largely independent of fibre-type. Furthermore, we show that resistance exercise leads to signs of mild mitochondrial stress, without an increase in the number of damaged mitochondria. Using publicly available transcriptomic data we show that acute resistance exercise increases the expression of markers of mitochondrial biogenesis, fission, and mitochondrial unfolded protein responses (UPRmt). Further, we observed an enrichment of the UPRmt in the basal transcriptome of strength-trained individuals. Together, these findings show that strength athletes possess a unique mitochondrial remodelling, which minimises the space required for mitochondria. We propose that the concurrent activation of markers of mitochondrial biogenesis and mitochondrial remodelling pathways (fission and UPRmt) with resistance exercise may be partially responsible for the observed mitochondrial phenotype of strength athletes.
It has recently been established that myosin, the molecular motor protein, is able to exist in two conformations in relaxed skeletal muscle. These conformations are known as the super-relaxed (SRX) and disordered-relaxed (DRX) states and are finely balanced to optimize ATP consumption and skeletal muscle metabolism. Indeed, SRX myosins are thought to have a 5- to 10-fold reduction in ATP turnover compared with DRX myosins. Here, we investigated whether chronic physical activity in humans would be associated with changes in the proportions of SRX and DRX skeletal myosins. For that, we isolated muscle fibers from young men of various physical activity levels (sedentary, moderately physically active, endurance-trained, and strength-trained athletes) and ran a loaded Mant-ATP chase protocol. We observed that in moderately physically active individuals, the amount of myosin molecules in the SRX state in type II muscle fibers was significantly greater than in age-matched sedentary individuals. In parallel, we did not find any difference in the proportions of SRX and DRX myosins in myofibers between highly endurance- and strength-trained athletes. We did however observe changes in their ATP turnover time. Altogether, these results indicate that physical activity level and training type can influence the resting skeletal muscle myosin dynamics. Our findings also emphasize that environmental stimuli such as exercise have the potential to rewire the molecular metabolism of human skeletal muscle through myosin.
It has recently been established that myosin, the molecular motor protein, is able to exist in two conformations in relaxed skeletal muscle. These conformations are known as super-relaxed (SRX) and disordered-relaxed (DRX) states and are finely balanced to optimize skeletal muscle metabolism. Indeed, SRX myosins are thought to have a 10-fold reduction in ATP turnover compared to DRX myosins. Here, we investigated whether chronic physical activity in humans would be associated with changes in the proportions of SRX and DRX skeletal myosins. For that, we isolated muscle fibres from various athletic and sedentary populations and ran a loaded Mant-ATP chase proto-col. We observed that, in endurance-trained athletes, the amounts of myosin molecules in the SRX state was significantly greater than in age-matched sedentary individuals or than in strength athletes. To further assess whether this change would have an impact on the potency of a SRX-inducing pharmacological compound, Mavacamten, we performed similar analyses as above with and without the drug in muscle fibres from endurance athletes. Surprisingly, we found that 0.3 micromolar of Mavacamten had only marginal effects. Altogether, our results indicate that chronic endurance training-status influences resting skeletal myosin conformations, and Mavacamten potency. Our findings also emphasize that environmental stimuli such as exercise can re-wire the molecular metabolism of human skeletal muscle through myosin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.