BackgroundDozens of Traditional Chinese Medicine (TCM) formulas have been used for promotion of "blood production" for centuries, and we are interested in developing novel thrombopoietic medicines from these TCMs. Our previous studies have demonstrated the hematopoietic effects of DangGui BuXue Tong (DBT), a formula composed of Radix Angelicae Sinensis and Radix Astragali in animal and cellular models. As a step further to identify and characterize the active chemical components of DBT, we tested the hematopoietic and particularly, thrombopoietic effects of polysaccharide-enriched fractions from the root of Radix Angelicae Sinensis (APS) in this study.MethodsA myelosuppression mouse model was treated with APS (10 mg/kg/day). Peripheral blood cells from APS, thrombopoietin and vehicle-treated samples were then counted at different time-points. Using the colony-forming unit (CFU) assays, we determined the effects of APS on the proliferation and differentiation of hematopoietic stem/progenitor cells and megakaryocytic lineages. Using a megakaryocytic cell line M-07e as model, we analyzed the cellular apoptosis progression with and without APS treatment by Annexin V, Mitochondrial Membrane Potential and Caspase 3 assays. Last, the anti-apoptotic effect of APS on cells treated with Ly294002, a Phosphatidylinositol 3-Kinse inhibitor (PI3K) was also tested.ResultsIn animal models, APS significantly enhanced not only the recovery of platelets, other blood cells and their progenitor cells, but also the formation of Colony Forming Unit (CFU). In M-07e cells, we observed the anti-apoptotic effect of APS. Treatment by Ly294002 alone increased the percentage of cells undergoing apoptosis. However, addition of APS to Ly294002-treated cells significantly reduced the percentage of cells undergoing apoptosis.ConclusionsAPS promotes hematopoiesis and thrombopoiesis in the mouse model. This effect likely resulted from the anti-apoptosis activity of APS and is likely to involve the PI3K/AKT pathway.
Side population (SP) cells are a select cell population identified by a capacity to efflux Hoechst dye that are highly enriched for stem/progenitor cell activity. In this study, we found that SP cells comprised of CD45(+) and CD45(-) subtypes are present in the embryonic lung (E-SP) at levels varying with gestational age. Long-term in vivo competitive blood reconstitution studies demonstrated that hematopoeitic stem cell capacity resided within the CD45(+) E-SP cell subset. Immunophenotyping of CD45(-) E-SP cells determined that this population consists of two subtypes: CD31(-) and CD31(+). Limited gene expression profiling indicated that CD45(-)/CD31(-) E-SP cells have features of smooth muscle precursors, and give rise to smooth muscle in culture. On the other hand, CD45(-)/CD31(+) E-SP cells express genes characteristic of endothelium, but by themselves do not grow or differentiate in culture. Co-culture of CD45(-)/CD31(+) and CD45(-)/CD31(-) E-SP cells, however, resulted in the formation of complex tubular networks that express markers of endothelium. Together, these findings illustrate that embryonic lung SP cells are heterogeneous, composed of hematopoeitic and nonhematopoeitic progenitors, and may play a key role in the formation of the lung vasculature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.