New therapeutic approaches to counter the increasing prevalence of obesity and type 2 diabetes mellitus are in high demand. Deregulation of the phosphoinositide-3-kinase (PI3K)/v-akt murine thymoma viral oncogene homologue (AKT), mitogen-activated protein kinase (MAPK) and AMP-activated protein kinase (AMPK) pathways, which are essential for glucose homeostasis, often results in obesity and diabetes. Thus, these pathways should be attractive therapeutic targets. However, with the exception of metformin, which is considered to function mainly by activating AMPK, no treatment for the metabolic syndrome based on targeting protein kinases has yet been developed. By contrast, therapies based on the inhibition of the PI3K/AKT and MAPK pathways are already successful in the treatment of diverse cancer types and inflammatory diseases. This contradiction prompted us to review the signal transduction mechanisms of PI3K/AKT, MAPK and AMPK and their roles in glucose homeostasis, and we also discuss current clinical implications.
Aims/hypothesis Inflammation contributes to both insulin resistance and pancreatic beta cell failure in human type 2 diabetes. Toll-like receptors (TLRs) are highly conserved pattern recognition receptors that coordinate the innate inflammatory response to numerous substances, including NEFAs. Here we investigated a potential contribution of TLR2 to the metabolic dysregulation induced by high-fat diet (HFD) feeding in mice.
Highlights d The PIDDosome controls hepatocyte ploidy during postnatal development & regeneration d The PIDDosome defines the speed of liver regeneration posthepatectomy d Aneuploidy in the liver correlates with basal ploidy state but is not limited by CASP2 d E2F family members regulate expression of CASP2 and PIDD1 for liver ploidy control
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.