'Grid cells' in the dorsocaudal medial entorhinal cortex (dMEC) are activated when a rat is located at any of the vertices of a grid of equilateral triangles covering the environment. dMEC grid cells have different frequencies and phase offsets. However, cells in the dentate gyrus (DG) and hippocampal area CA3 of the rodent typically display place fields, where individual cells are active over only a single portion of the space. In a model of the hippocampus, we have shown that the connectivity from the entorhinal cortex to the dentate granule cells could allow the dentate granule cells to operate as a competitive network to recode their inputs to produce sparse orthogonal representations, and this includes spatial pattern separation. In this paper we show that the same computational hypothesis can account for the mapping of EC grid cells to dentate place cells. We show that the learning in the competitive network is an important part of the way in which the mapping can be achieved. We further show that incorporation of a short term memory trace into the associative learning can help to produce the relatively broad place fields found in the hippocampus.
Some neurons encode information about the orientation or position of an animal, and can maintain their response properties in the absence of visual input. Examples include head direction cells in rats and primates, place cells in rats and spatial view cells in primates. 'Continuous attractor' neural networks model these continuous physical spaces by using recurrent collateral connections between the neurons which reflect the distance between the neurons in the state space (e.g. head direction space) of the animal. These networks maintain a localized packet of neuronal activity representing the current state of the animal. We show how the synaptic connections in a one-dimensional continuous attractor network (of for example head direction cells) could be self-organized by associative learning. We also show how the activity packet could be moved from one location to another by idiothetic (self-motion) inputs, for example vestibular or proprioceptive, and how the synaptic connections could self-organize to implement this. The models described use 'trace' associative synaptic learning rules that utilize a form of temporal average of recent cell activity to associate the firing of rotation cells with the recent change in the representation of the head direction in the continuous attractor. We also show how a nonlinear neuronal activation function that could be implemented by NMDA receptors could contribute to the stability of the activity packet that represents the current state of the animal.
We present a hierarchical neural network model, in which subpopulations of neurons develop fixed and regularly repeating temporal chains of spikes (polychronization), which respond specifically to randomized Poisson spike trains representing the input training images. The performance is improved by including top-down and lateral synaptic connections, as well as introducing multiple synaptic contacts between each pair of pre- and postsynaptic neurons, with different synaptic contacts having different axonal delays. Spike-timing-dependent plasticity thus allows the model to select the most effective axonal transmission delay between neurons. Furthermore, neurons representing the binding relationship between low-level and high-level visual features emerge through visually guided learning. This begins to provide a way forward to solving the classic feature binding problem in visual neuroscience and leads to a new hypothesis concerning how information about visual features at every spatial scale may be projected upward through successive neuronal layers. We name this hypothetical upward projection of information the "holographic principle." (PsycINFO Database Record
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.