This paper concerns the adaptation of spectrum dictionaries in audio source separation with supervised learning. Supposing that samples of the audio sources to separate are available, a filter adaptation in the frequency domain is proposed in the context of Non-Negative Matrix Factorization with the Itakura-Saito divergence. The algorithm is able to retrieve the acoustical filter applied to the sources with a good accuracy, and demonstrates significantly higher performances on separation tasks when compared with the non-adaptive model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.