Cell signaling is initiated by characteristic protein patterns in the plasma membrane, but tools to decipher their molecular organization and activation are hitherto lacking. Among the well‐known signaling pattern is the death inducing signaling complex with a predicted hexagonal receptor architecture. To probe this architecture, DNA origami‐based nanoagents with nanometer precise arrangements of the death receptor ligand FasL are introduced and presented to cells. Mimicking different receptor geometries, these nanoagents act as signaling platforms inducing fastest time‐to‐death kinetics for hexagonal FasL arrangements with 10 nm inter‐molecular spacing. Compared to naturally occurring soluble FasL, this trigger is faster and 100× more efficient. Nanoagents with different spacing, lower FasL number or higher coupling flexibility impede signaling. The results present DNA origami as versatile signaling scaffolds exhibiting unprecedented control over molecular number and geometry. They define molecular benchmarks in apoptosis signal initiation and constitute a new strategy to drive particular cell responses.
AbstractNanoscale probes with fine-tunable properties are of key interest in cell biology and nanomedicine to elucidate and eventually control signaling processes in cells. A critical, still challenging issue is to conjugate these probes with molecules in a number- and spatially-controlled manner. Here, DNA origami-based nanoagents as nanometer precise scaffolds presenting Fas ligand (FasL) in well-defined arrangements to cells are reported. These nanoagents activate receptor molecules in the plasma membrane initiating apoptosis signaling in cells. Signaling for apoptosis depends sensitively on FasL geometry: fastest time-to-death kinetics are obtained for FasL nanoagents representing predicted structure models of hexagonal receptor ordering with 10 nm inter-molecular spacing. Slower kinetics are observed for one to two FasL on DNA origami or FasL coupled with higher flexibility. Nanoagents with FasL arranged in hexagons with small (5 nm) and large (30 nm) spacing impede signal transduction. Moreover, for predicted hexagonal FasL nanoagents, signaling efficiency is faster and 100× higher compared to naturally occurring soluble FasL. Incubation of the FasL-origami nanoagent in solution exhibited an EC50 value of only 90 pM. These studies present DNA origami as versatile signaling platforms to probe the significance of molecular number and nanoscale ordering for signal initiation in cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.