Slow light devices such as photonic crystal waveguides (PhCW) and coupled resonator optical waveguides (CROW) have much promise for optical signal processing applications and a number of successful demonstrations underpinning this promise have already been made. Most of these applications are limited by propagation losses, especially for higher group indices. These losses are caused by technological imperfections ("extrinsic loss") that cause scattering of light from the waveguide mode. The relationship between this loss and the group velocity is complex and until now has not been fully understood. Here, we present a comprehensive explanation of the extrinsic loss mechanisms in PhC waveguides and address some misconceptions surrounding loss and slow light that have arisen in recent years. We develop a theoretical model that accurately describes the loss spectra of PhC waveguides. One of the key insights of the model is that the entire hole contributes coherently to the scattering process, in contrast to previous models that added up the scattering from short sections incoherently. As a result, we have already realised waveguides with significantly lower losses than comparable photonic crystal waveguides as well as achieving propagation losses, in units of loss per unit time (dB/ns) that are even lower than those of state-of-the-art coupled resonator optical waveguides based on silicon photonic wires. The model will enable more advanced designs with further loss reduction within existing technological constraints.
In this Letter, we study slow-light transport in photonic-crystal waveguides in the presence of structural imperfections. In contrast with previous theoretical works that rely on perturbation theories, the present formalism takes into account multiple scattering and localization effects. It allows for a quantitative prediction of the main statistical transport coefficients, including averaged values as well as probability distributions. In particular, we evidence that, as the group velocity decreases, the attenuation probability distribution exhibits a rapid broadening that one should consider for designing slow-light devices.
International audienceThe transport properties of photonic periodic (monomode) waveguides in the presence of realistic fabrication errors are analyzed. They are governed by out-of-plane loss and backscattering. We derive a closed-form expression for the mean-free path that characterizes the transition between the ballistic and localization transport regimes in these waveguides. In agreement with earlier works, the mean-free path is found to be dominantly affected by backscattering for small group velocities. The predictions are quantitatively supported by fully vectorial computational results obtained for two-dimensional periodic waveguides. Three-dimensional (3D) structures, such as single-row-defect photonic-crystal waveguides, have also been analyzed and are shown to provide moderate backscattering in comparison to other 3D waveguides. But in all test cases, we find that the mean-free path is critically small, even for moderately small group velocities of c/50 and for up-to-date fabrication nanofacilities
We report statistical fluctuations for the transmissions of a series of photonic-crystal waveguides (PhCWs) that are supposedly identical and that only differ because of statistical structural fabrication-induced imperfections. For practical PhCW lengths offering tolerable -3dB attenuation with moderate group indices (n(g) approximately 60), the transmission spectra contains very narrow peaks (Q approximately 20,000) that vary from one waveguide to another. The physical origin of the peaks is explained by calculating the actual electromagnetic-field pattern inside the waveguide. The peaks that are observed in an intermediate regime between the ballistic and localization transports are responsible for a smearing of the local density of states, for a rapid broadening of the probability density function of the transmission, and bring a severe constraint on the effective use of slow light for on-chip optical information processing. The experimental results are quantitatively supported by theoretical results obtained with a coupled-Bloch-mode approach that takes into account multiple scattering and localization effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.