The establishment of HIV type 1 (HIV-1) infection is initiated by the stable attachment of the virion to the target cell surface. Although this process relies primarily upon interaction between virus-encoded gp120 and cell surface CD4, a number of distinct interactions influence binding of HIV-1 to host cells. In this study, we report that galectin-1, a dimeric β-galactoside-binding protein, promotes infection with R5, X4, and R5X4 variants. Galectin-1 acts as a soluble adhesion molecule by facilitating attachment of HIV-1 to the cell surface. This postulate is based on experiments where galectin-1 rendered HIV-1 particles more refractory to various agents that block HIV-1 adsorption and coreceptor binding (i.e., a blocking anti-CD4, soluble CD4, human anti-HIV-1 polyclonal Abs; stromal cell-derived factor-1α; RANTES). Experiments performed with the fusion inhibitor T-20 confirmed that galectin-1 is primarily affecting HIV-1 attachment. The relevance of the present findings for the pathogenesis of HIV-1 infection is provided by the fact that galectin-1 is abundantly expressed in the thymus and lymph nodes, organs that represent major reservoirs for HIV-1. Moreover, galectin-1 is secreted by activated CD8+ T lymphocytes, which are found in high numbers in HIV-1-positive patients. Therefore, it is proposed that galectin-1, which is released in an exocrine fashion at HIV-1 replication sites, can cross-link HIV-1 and target cells and promote a firmer adhesion of the virus to the cell surface, thereby augmenting the efficiency of the infection process. Overall, our findings suggest that galectin-1 might affect the pathogenesis of HIV-1 infection.
Following primary infection with human immunodeficiency virus type-1 (HIV-1), macrophages are thought to play an important role, as they are one of the first target cells the virus encounters and can also sustain a significant production of viruses over extended periods of time. While the interaction between the primary cellular receptor CD4 and the virus-encoded external envelope glycoprotein gp120 initiates the infection process, it has been suggested that various host factors are exploited by HIV-1 to facilitate adsorption onto the cell surface. Macrophages and other cells found at the infection site can secrete a soluble mammalian lectin, galectin-1, which binds to beta-galactoside residues through its carbohydrate recognition domain. Being a dimer, galectin-1 can cross-link ligands expressed on different constituents to mediate adhesion between cells or between cells and pathogens. We report here that galectin-1, but not galectin-3, increased HIV-1 infectivity in monocyte-derived macrophages (MDMs). This phenomenon was likely due to an enhancement of virus adsorption kinetics, which facilitates HIV-1 entry. The fusion inhibitors T-20 and TAK779 remained effective at reducing infection even in the presence of galectin-1, indicating that the galectin-1-mediated effect is occurring at a step prior to fusion. Together, our data suggest that galectin-1 can facilitate HIV-1 infection in MDMs by promoting early events of the virus replicative cycle (i.e. adsorption).
lck and the transmembrane tyrosine phosphatase CD45 were all found to be involved in TCR-CD28-PGE 2 -directed increase in HTLV-1 LTR activity. This study presents new information on the possible mechanisms underlying reactivation of this retrovirus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.