Quantum turbulence—the stochastic motion of quantum fluids such as 4He and 3He-B, which display pure superfluidity at zero temperature and two-fluid behavior at finite but low temperatures—has been a subject of intense experimental, theoretical, and numerical studies over the last half a century. Yet, there does not exist a satisfactory phenomenological framework that captures the rich variety of experimental observations, physical properties, and characteristic features, at the same level of detail as incompressible turbulence in conventional viscous fluids. Here we present such a phenomenology that captures in simple terms many known features and regimes of quantum turbulence, in both the limit of zero temperature and the temperature range of two-fluid behavior.
Superconducting heat switches with extremely low normal state resistances are needed for constructing continuous nuclear demagnetization refrigerators with high cooling power. Aluminum is a suitable superconductor for the heat switch because of its high Debye temperature and its commercial availability in high purity. We have constructed a high quality Al heat switch whose design is significantly different than that of previous heat switches. In order to join the Al to Cu with low contact resistance, we plasma etched the Al to remove its oxide layer and then immediately deposited Au without breaking the vacuum of the e-beam evaporator. In the normal state of the heat switch, we measured a thermal conductance of 8 T W/K2, which is equivalent to an electrical resistance of 3 nΩ according to the Wiedemann–Franz law. In the superconducting state, we measured a thermal conductance that is 2 × 106 times lower than that of the normal state at 50 mK.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.