BACKGROUNDThe appropriate oxygenation target for mechanical ventilation in comatose survivors of out-of-hospital cardiac arrest is unknown. METHODSIn this randomized trial with a 2-by-2 factorial design, we randomly assigned comatose adults with out-of-hospital cardiac arrest in a 1:1 ratio to either a restrictive oxygen target of a partial pressure of arterial oxygen (Pao 2 ) of 9 to 10 kPa (68 to 75 mm Hg) or a liberal oxygen target of a Pao 2 of 13 to 14 kPa (98 to 105 mm Hg); patients were also assigned to one of two blood-pressure targets (reported separately). The primary outcome was a composite of death from any cause or hospital discharge with severe disability or coma (Cerebral Performance Category [CPC] of 3 or 4; categories range from 1 to 5, with higher values indicating more severe disability), whichever occurred first within 90 days after randomization. Secondary outcomes were neuron-specific enolase levels at 48 hours, death from any cause, the score on the Montreal Cognitive Assessment (ranging from 0 to 30, with higher scores indicating better cognitive ability), the score on the modified Rankin scale (ranging from 0 to 6, with higher scores indicating greater disability), and the CPC at 90 days. RESULTSA total of 789 patients underwent randomization. A primary-outcome event occurred in 126 of 394 patients (32.0%) in the restrictive-target group and in 134 of 395 patients (33.9%) in the liberal-target group (hazard ratio, 0.95; 95% confidence interval, 0.75 to 1.21; P = 0.69). At 90 days, death had occurred in 113 patients (28.7%) in the restrictive-target group and in 123 (31.1%) in the liberal-target group. On the CPC, the median category was 1 in the two groups; on the modified Rankin scale, the median score was 2 in the restrictive-target group and 1 in the liberaltarget group; and on the Montreal Cognitive Assessment, the median score was 27 in the two groups. At 48 hours, the median neuron-specific enolase level was 17 μg per liter in the restrictive-target group and 18 μg per liter in the liberaltarget group. The incidence of adverse events was similar in the two groups. CONCLUSIONSTargeting of a restrictive or liberal oxygenation strategy in comatose patients after resuscitation for cardiac arrest resulted in a similar incidence of death or severe disability or coma. (Funded by the Novo Nordisk Foundation; BOX ClinicalTrials .gov number, NCT03141099.
Saline administration may change renin-angiotensin-aldosterone system (RAAS) activity and sodium excretion at constant mean arterial pressure (MAP). We hypothesized that such responses are elicited mainly by renal sympathetic nerve activity by beta1-receptors (beta1-RSNA), and tested the hypothesis by studying RAAS and renal excretion during slow saline loading at constant plasma sodium concentration (Na+ loading; 12 micromol Na+.kg(-1).min(-1) for 4 h). Normal subjects were studied on low-sodium intake with and without beta1-adrenergic blockade by metoprolol. Metoprolol per se reduced RAAS activity as expected. Na+ loading decreased plasma renin concentration (PRC) by one-third, plasma ANG II by one-half, and plasma aldosterone by two-thirds (all P < 0.05); surprisingly, these changes were found without, as well as during, acute metoprolol administration. Concomitantly, sodium excretion increased indistinguishably with and without metoprolol (16 +/- 2 to 71 +/- 14 micromol/min; 13 +/- 2 to 55 +/- 13 micromol/min, respectively). Na+ loading did not increase plasma atrial natriuretic peptide, glomerular filtration rate (GFR by 51Cr-EDTA), MAP, or cardiac output (CO by impedance cardiography), but increased central venous pressure (CVP) by approximately 2.0 mmHg (P < 0.05). During Na+ loading, sodium excretion increased with CVP at an average slope of 7 micromol.min(-1).mmHg(-1). Concomitantly, plasma vasopressin decreased by 30-40% (P < 0.05). In conclusion, beta1-adrenoceptor blockade affects neither the acute saline-mediated deactivation of RAAS nor the associated natriuretic response, and the RAAS response to modest saline loading seems independent of changes in MAP, CO, GFR, beta1-mediated effects of norepinephrine, and ANP. Unexpectedly, the results do not allow assessment of the relative importance of RAAS-dependent and -independent regulation of renal sodium excretion. The results are compatible with the notion that at constant arterial pressure, a volume receptor elicited reduction in RSNA via receptors other than beta1-adrenoceptors, decreases renal tubular sodium reabsorption proximal to the macula densa leading to increased NaCl concentration at the macula densa, and subsequent inhibition of renin secretion.
The LP ratio of cerebral venous blood increased significantly during CPB, indicating compromised cerebral oxidative metabolism. Conventional monitoring of rSO by NIRS did not show a corresponding decrease in cerebral oxygenation. As the patients exhibited decreased cognitive functions after CPB, increases in jugular venous LP ratio may be a sensitive indicator of impending cerebral damage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.