The statements and opinions expressed in COVID-19 Curbside Consults are based on experience and the available literature as of the date posted. While we try to regularly update this content, any offered recommendations cannot be substituted for the clinical judgment of clinicians caring for individual patients.
Loss of susceptibility to apoptosis signals is a crucial step in carcinogenesis. Therefore, sensitization of tumor cells to apoptosis is a promising therapeutic strategy. c-Jun-Nterminal-kinases (JNK) have been implicated in stressinduced apoptosis, but may also contribute to survival signaling. Here we show that CD95-induced apoptosis is augmented by the JNK inhibitor SP600125 and small interfering RNA directed against JNK1/2. SP600125 potently inhibited methyl methane sulfonate-induced phosphorylation of c-Jun, but had minimal effect on apoptosis alone. In contrast, it strongly enhanced CD95-mediated apoptosis in six of eight tumor cell lines and led to a G 2 /M phase arrest in all cell lines. SP600125 enhanced cleavage of caspase 3 and caspase 8, the most upstream caspase in the CD95 pathway. JNK inhibition up-regulates p53 and its target genes p21Cip1/Waf1 and CD95. However, although HCT116 p53 À/À cells and p21 +/+ cells were less sensitive to CD95 stimulation than their p53 +/+ and p21 À/À counterparts, p53and p21 were not involved in the JNK-mediated effect. JunD, which was described to be protective in tumor necrosis factor-induced apoptosis, was not regulated by JNK inhibition on the protein level. When transcription was blocked by actinomycin D, JNK inhibition still enhanced apoptosis to a comparable extent. We conclude that JNK inhibition has antitumor activity by inducing growth arrest and enhancing CD95-mediated apoptosis by a transcription-independent mechanism. (Cancer Res 2005; 65(15): 6780-8)
Background: cJun terminal kinase (JNK) is constitutively activated in most hepatocellular carcinomas (HCCs), yet its exact role in carcinogenesis remains controversial. While tumour necrosis factor (TNF)-related apoptosisinducing ligand (TRAIL) is known as a major mediator of acquired immune tumour surveillance, and is currently being tested in clinical trials as a novel cancer therapy, the resistance of many tumours to TRAIL and concerns about its toxicity in vivo represent obstacles to its clinical application. In this study we investigated whether JNK activity in HCC could contribute to the resistance to apoptosis in these tumours. Methods: The effect of JNK/Jun inhibition on receptormediated apoptosis was analysed by pharmacological inhibition or RNA interference in cancer cells and nontumour cells isolated from human liver or transgenic mice lacking a phosphorylation site for Jun. Results: JNK inhibition caused cell cycle arrest, enhanced caspase recruitment, and greatly sensitised HCC cells but not normal hepatocytes to TRAIL. TRAILinduced activation of JNK could be effectively interrupted by administration of the JNK inhibitor SP600125. Conclusions: Expression and TRAIL-dependent feedback activation of JNK likely represent a mechanism by which cancer cells escape TRAIL-mediated tumour surveillance. JNK inhibition might represent a novel strategy for specifically sensitising HCC cells to TRAIL thus opening promising therapeutic perspectives for safe and effective use of TRAIL in cancer treatment.Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide, and its incidence is rising. To date, surgery is the only curative treatment available for those who qualify. The majority of patients, however, are not suitable candidates for surgery, and curative medical treatment is currently not available. Therefore, new therapeutic approaches are needed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.