In the E-region of the ionosphere, at heights between 90 and 130 km, thin patches of enhanced ionization occur intermittently. The electron density in these sporadic-E (Es) clouds can sometimes be so high that radio waves with frequencies up to 150 MHz are obliquely reflected. While this phenomenon is well known, the reflection mechanism itself is not well understood. To investigate this question, an experimental system has been developed for accurate polarimetric and fading measurements of 50 MHz radio waves obliquely reflected by midlatitude Es layers. The overall sensitivity of the system is optimized by reducing environmental electromagnetic noise, giving the ability to observe weak, short-lived 50 MHz Es propagation events. The effect of the ground reflection on observed polarization is analyzed and the induced amplitude and phase biases are compensated. It is found that accurate measurements are only possible below the pseudo-Brewster angle. To demonstrate the effectiveness of the system, initial empirical results are presented which provide clear evidence of magneto-ionic double refraction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.