Location Privacy-Preserving Mechanisms (LPPMs) in the literature largely consider that users' data available for training wholly characterizes their mobility patterns. Thus, they hardwire this information in their designs and evaluate their privacy properties with these same data. In this paper, we aim to understand the impact of this decision on the level of privacy these LPPMs may offer in real life when the users' mobility data may be different from the data used in the design phase. Our results show that, in many cases, training data does not capture users' behavior accurately and, thus, the level of privacy provided by the LPPM is often overestimated. To address this gap between theory and practice, we propose to use blank-slate models for LPPM design. Contrary to the hardwired approach, that assumes known users' behavior, blank-slate models learn the users' behavior from the queries to the service provider. We leverage this blank-slate approach to develop a new family of LPPMs, that we call Profile Estimation-Based LPPMs. Using real data, we empirically show that our proposal outperforms optimal state-ofthe-art mechanisms designed on sporadic hardwired models. On non-sporadic location privacy scenarios, our method is only better if the usage of the location privacy service is not continuous. It is our hope that eliminating the need to bootstrap the mechanisms with training data and ensuring that the mechanisms are lightweight and easy to compute help fostering the integration of location privacy protections in deployed systems.• We empirically show that hardwiring the characteristics of a dataset into Location Privacy Preserving Mechanisms [1]-[9], arXiv:1809.04415v2 [cs.CR]
Since its proposal in 2013, geo-indistinguishability has been consolidated as a formal notion of location privacy, generating a rich body of literature building on this idea. A problem with most of these follow-up works is that they blindly rely on geo-indistinguishability to provide location privacy, ignoring the numerical interpretation of this privacy guarantee. In this paper, we provide an alternative formulation of geo-indistinguishability as an adversary error, and use it to show that the privacy vs. utility trade-off that can be obtained is not as appealing as implied by the literature. We also show that although geo-indistinguishability guarantees a lower bound on the adversary's error, this comes at the cost of achieving poorer performance than other noise generation mechanisms in terms of average error, and enabling the possibility of exposing obfuscated locations that are useless from the quality of service point of view.
Mixes, relaying routers that hide the relation between incoming and outgoing messages, are the main building block of high-latency anonymous communication networks. A number of so-called disclosure attacks have been proposed to effectively de-anonymize traffic sent through these channels. Yet, the dependence of their success on the system parameters is not well-understood. We propose the Least Squares Disclosure Attack (LSDA), in which user profiles are estimated by solving a least squares problem. We show that LSDA is not only suitable for the analysis of threshold mixes, but can be easily extended to attack pool mixes. Furthermore, contrary to previous heuristic-based attacks, our approach allows us to analytically derive expressions that characterize the profiling error of LSDA with respect to the system parameters. We empirically demonstrate that LSDA recovers users' profiles with greater accuracy than its statistical predecessors and verify that our analysis closely predicts actual performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.