The outer parts of a number of small Late Jurassic sandy deep-water fans in the northern North Sea are dominated by the stacked deposits of co-genetic sandy and muddy gravity flows. Sharp-based, structureless and dewatered sandstone beds are directly overlain by mudclast breccias that are often rich in terrestrial plant fragments and capped by thin laminated sandstones, pseudonodular siltstones and mudstones. The contacts between the clast-rich breccias and the underlying sandstones are typically highly irregular with evidence for liquefaction and upward sand injection. The breccias contain fragments (up to metre scale) of exotic lithologies surrounded by a matrix that is extremely heterogeneous and strewn with multiphase and variably sheared sand injections and scattered coarse and very coarse sand grains (often coarser than in the immediately underlying sand bed). Markov chain analysis establishes that the breccias consistently overlie sandstones, and the character of the breccias and their external contacts rule out a postdepositional origin via in situ liquefaction, intrastratal flowage or bed amalgamation and disruption. The breccias are interpreted as debrites that rode on a water-rich sand bed just deposited by a co-genetic concentrated gravity current. As such, they are referred to as 'linked debrites' to distinguish them from debrites emplaced in the absence of a precursor sand bed. The distinction is important, because these linked debris flows can achieve significant mobility through entrainment of both water and sediment from beneath, and they ride on a low-friction carpet of liquefied sand. This explains the paradox presented by fan fringes in which there are common debrites, when conventional thinking might predict that deposits of low-concentration gravity currents should be more important here. In fact, evidence for transport by low-concentration turbidity currents is rare in these systems. Several possible mechanisms might explain the formation of linked flows, but the ultimate source of both sandy and clast-rich flow components must be in shallower water on the basin margin (the debrites are not triggered from distal slopes). Flow partitioning may have occurred by upslope erosion and retardation of the mudclast-charged portion of an erosional sandy density current, partial flow transformation of a precursor debris flow and/or hydraulic segregation and reconcentration of the flaky clasts and carbonaceous matter during transport. Linked debrites are not restricted to small sand-rich fans, and similar mechanisms may be responsible for the long runout of debris flows in other systems. The recognition of a distinct class of linked debrites is of wider importance for facies prediction, reservoir heterogeneity and even carbon fluxes and sequestration on continental margins.
Hybrid event beds comprising both clean and mud‐rich sandstone are important components of many deep‐water systems and reflect the passage of turbulent sediment gravity flows with zones of clay‐damped or suppressed turbulence. ‘Behind‐outcrop’ cores from the Pennsylvanian deep‐water Ross Sandstone Formation reveal hybrid event beds with a wide range of expression in terms of relative abundance, character and inferred origin. Muddy hybrid event beds first appear in the underlying Clare Shale Formation where they are interpreted as the distal run‐out of the wakes to flows which deposited most of their sand up‐dip before transforming to fluid mud. These are overlain by unusually thick (up to 4·4 m), coarse sandy hybrid event beds (89% of the lowermost Ross Formation by thickness) that record deposition from outsized flows in which transformations were driven by both substrate entrainment in the body of the flow and clay fractionation in the wake. A switch to dominantly fine‐grained sand was accompanied initially by the arrest of turbulence‐damped, mud‐rich flows with evidence for transitional flow conditions and thick fluid mud caps. The mid and upper Ross Formation contain metre‐scale bed sets of hybrid event beds (21 to 14%, respectively) in (i) upward‐sandying bed set associations immediately beneath amalgamated sheet or channel elements; (ii) stacked thick‐bedded and thin‐bedded hybrid event bed‐dominated bed sets; (iii) associations of hybrid event bed‐dominated bed sets alternating with conventional turbidites; and (iv) rare outsized hybrid event beds. Hybrid event bed dominance in the lower Ross Formation may reflect significant initial disequilibrium, a bias towards large‐volume flows in distal sectors of the basin, extensive mud‐draped slopes and greater drop heights promoting erosion. Higher in the formation, hybrid event beds record local perturbations related to channel switching, lobe relocations and extension of channels across the fan surface. The Ross Sandstone Formation confirms that hybrid event beds can form in a variety of ways, even in the same system, and that different flow transformation mechanisms may operate even during the passage of a single flow.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.