This paper investigates the mechanisms of convective cloud organization by precipitationdriven cold pools over the warm tropical Indian Ocean during the 2011 Atmospheric Radiation Measurement (ARM) Madden-Julian Oscillation (MJO) Investigation Experiment/Dynamics of the MJO (AMIE/DYNAMO) field campaign. A high-resolution regional model simulation is performed using the Weather Research and Forecasting model during the transition from suppressed to active phases of the November 2011 MJO. The simulated cold pool lifetimes, spatial extent, and thermodynamic properties agree well with the radar and ship-borne observations from the field campaign. The thermodynamic and dynamic structures of the outflow boundaries of isolated and intersecting cold pools in the simulation and the associated secondary cloud populations are examined. Intersecting cold pools last more than twice as long, are twice as large, 41% more intense (measured with buoyancy), and 62% deeper than isolated cold pools. Consequently, intersecting cold pools trigger 73% more convection than do isolated ones. This is due to stronger outflows that enhance secondary updraft velocities by up to 45%. However, cold pool-triggered convective clouds grow into deep convection not because of the stronger secondary updrafts at cloud base, but rather due to closer spacing (aggregation) between clouds and larger cloud clusters that form along the cold pool boundaries when they intersect. The close spacing of large clouds moistens the local environment and reduces entrainment drying, increasing the probability that the clouds further develop into deep convection. Implications for the design of future convective parameterization with cold poolmodulated entrainment rates are discussed.
Observations from 1 km beneath to 25 km above the sea surface reveal the complex interactions in Indian Ocean westerly wind bursts associated with the Madden-Julian oscillation.
The Clouds, Aerosol, and Precipitation in the Marine Boundary Layer (CAP-MBL) deployment at Graciosa Island in the Azores generated a 21-month (April 2009–December 2010) comprehensive dataset documenting clouds, aerosols, and precipitation using the Atmospheric Radiation Measurement Program (ARM) Mobile Facility (AMF). The scientific aim of the deployment is to gain improved understanding of the interactions of clouds, aerosols, and precipitation in the marine boundary layer. Graciosa Island straddles the boundary between the subtropics and midlatitudes in the northeast Atlantic Ocean and consequently experiences a great diversity of meteorological and cloudiness conditions. Low clouds are the dominant cloud type, with stratocumulus and cumulus occurring regularly. Approximately half of all clouds contained precipitation detectable as radar echoes below the cloud base. Radar and satellite observations show that clouds with tops from 1 to 11 km contribute more or less equally to surface-measured precipitation at Graciosa. A wide range of aerosol conditions was sampled during the deployment consistent with the diversity of sources as indicated by back-trajectory analysis. Preliminary findings suggest important two-way interactions between aerosols and clouds at Graciosa, with aerosols affecting light precipitation and cloud radiative properties while being controlled in part by precipitation scavenging. The data from Graciosa are being compared with short-range forecasts made with a variety of models. A pilot analysis with two climate and two weather forecast models shows that they reproduce the observed time-varying vertical structure of lower-tropospheric cloud fairly well but the cloud-nucleating aerosol concentrations less well. The Graciosa site has been chosen to be a permanent fixed ARM site that became operational in October 2013.
A depth-dependent boundary layer lapse rate was empirically deduced from 156 radiosondes released during six month-long research cruises to the southeast Pacific sampling a variety of stratocumulus conditions. The lapse-rate dependence on boundary layer height is weak, decreasing from a best fit of 7.6 to 7.2 K km 21 as the boundary layer deepens from 800 m to 2 km. Ship-based cloud-base heights up to 800 m correspond well to lifting condensation levels, indicating well-mixed conditions, with cloud bases .800 m often 200-600 m higher than the lifting condensation levels. The lapse rates were combined with Moderate Resolution Imaging Spectrometer 11-mm-derived cloud-top temperatures and satellite microwave-derived sea surface temperatures to estimate stratocumulus cloud-top heights. The October-mean cloud-top height structure of the southeast Pacific was then spatially and diurnally characterized. Coastal shoaling is apparent, but so is a significant along-coast cloud-top height gradient, with a pronounced elevation of the cloud-top heights above the Arica Bight at ;208S. Diurnal cloud-top height variations (inferred from irregular 4-times-daily sampling) can locally reach 250 m in amplitude, and they can help to visualize offshore propagation of free-tropospheric vertical motions. A shallow boundary layer associated with the Chilean coastal jet expands to its north and west in the afternoon. Cloud-top heights above the Arica Bight region are depressed in the afternoon, which may mean that increased subsidence from sensible heating of the Andes dominates an afternoon increase in convergence/upward motion at the exit of the Chilean coastal jet. In the southeast Atlantic during October, the stratocumulus cloud-top heights are typically lower than those in the southeast Pacific. A coastal jet region can also be identified through its low cloud-top heights. Coastal shoaling of the South Atlantic stratocumulus region is mostly uniform with latitude, in keeping with the more linear Namibian/Angolan coastline. The southeast Atlantic shallow cloudy boundary layer extends farther offshore than in the southeast Pacific, particularly at 158S.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.