Sleep is a fundamental biological rhythm involving the interaction of numerous brain structures and diverse neurotransmitter systems. The primary measures used to define sleep are the electroencephalogram (EEG) and electromyogram (EMG). However, EEG-based methods are often unsuitable for use in high-throughput screens as they are both time-intensive and involve invasive surgery. As such, the dissection of sleep mechanisms and the discovery of novel drugs that modulate sleep would benefit greatly from further development of rapid behavioural assays to assess sleep in animal models. Here we describe an automated non-invasive approach to evaluate sleep duration, latency and fragmentation using video tracking of mice in their home cage. This approach provides a high correlation with EEG/EMG measures under both baseline conditions and following administration of pharmacological agents. Moreover, the dose-dependent effects of sedatives, stimulants and light can be readily detected. This approach is both robust yet relatively inexpensive to implement, and can be easily incorporated into ongoing screening programmes to provide a powerful first-pass screen for assessing sleep and allied behaviours.
Healthy aging is associated with marked effects on sleep, including its daily amount and architecture, as well as the specific EEG oscillations. Neither the neurophysiological underpinnings nor the biological significance of these changes are understood, and crucially the question remains whether aging is associated with reduced sleep need or a diminished capacity to generate sufficient sleep. Here we tested the hypothesis that aging may affect local cortical networks, disrupting the capacity to generate and sustain sleep oscillations, and with it the local homeostatic response to sleep loss. We performed chronic recordings of cortical neural activity and local field potentials from the motor cortex in young and older male C57BL/6J mice, during spontaneous waking and sleep, as well as during sleep after sleep deprivation. In older animals, we observed an increase in the incidence of non-rapid eye movement sleep local field potential slow waves and their associated neuronal silent (OFF) periods, whereas the overall pattern of state-dependent cortical neuronal firing was generally similar between ages. Furthermore, we observed that the response to sleep deprivation at the level of local cortical network activity was not affected by aging. Our data thus suggest that the local cortical neural dynamics and local sleep homeostatic mechanisms, at least in the motor cortex, are not impaired during healthy senescence in mice. This indicates that powerful protective or compensatory mechanisms may exist to maintain neuronal function stable across the life span, counteracting global changes in sleep amount and architecture.SIGNIFICANCE STATEMENT The biological significance of age-dependent changes in sleep is unknown but may reflect either a diminished sleep need or a reduced capacity to generate deep sleep stages. As aging has been linked to profound disruptions in cortical sleep oscillations and because sleep need is reflected in specific patterns of cortical activity, we performed chronic electrophysiological recordings of cortical neural activity during waking, sleep, and after sleep deprivation from young and older mice. We found that all main hallmarks of cortical activity during spontaneous sleep and recovery sleep after sleep deprivation were largely intact in older mice, suggesting that the well-described age-related changes in global sleep are unlikely to arise from a disruption of local network dynamics within the neocortex.
Prolonged wakefulness is thought to gradually increase ‘sleep need' and influence subsequent sleep duration and intensity, but the role of specific waking behaviours remains unclear. Here we report the effect of voluntary wheel running during wakefulness on neuronal activity in the motor and somatosensory cortex in mice. We find that stereotypic wheel running is associated with a substantial reduction in firing rates among a large subpopulation of cortical neurons, especially at high speeds. Wheel running also has longer-term effects on spiking activity across periods of wakefulness. Specifically, cortical firing rates are significantly higher towards the end of a spontaneous prolonged waking period. However, this increase is abolished when wakefulness is dominated by running wheel activity. These findings indicate that wake-related changes in firing rates are determined not only by wake duration, but also by specific waking behaviours.
Deficits in sleep and circadian organization have been identified as common early features in patients with Huntington's disease that correlate with symptom severity and may be instrumental in disease progression. Studies in Huntington's disease gene carriers suggest that alterations in the electroencephalogram may reflect underlying neuronal dysfunction that is present in the premanifest stage. We conducted a longitudinal characterization of sleep/wake and electroencephalographic activity in the R6/2 mouse model of Huntington's disease to determine whether analogous electroencephalographic 'signatures' could be identified early in disease progression. R6/2 and wild-type mice were implanted for electroencephalographic recordings along with telemetry for the continuous recording of activity and body temperature. Diurnal patterns of activity and core body temperature were progressively disrupted in R6/2 mice, with a large reduction in the amplitude of these rhythms apparent by 13 weeks of age. The diurnal variation in sleep/wake states was gradually attenuated as sleep became more fragmented and total sleep time was reduced relative to wild-type mice. These genotypic differences were augmented at 17 weeks and evident across the entire 24-h period. Quantitative electroencephalogram analysis revealed anomalous increases in high beta and gamma activity (25-60 Hz) in all sleep/wake states in R6/2 mice, along with increases in theta activity during both non-rapid eye movement and rapid eye movement sleep and a reduction of delta power in non-rapid eye movement sleep. These dramatic alterations in quantitative electroencephalographic measures were apparent from our earliest recording (9 weeks), before any major differences in diurnal physiology or sleep/wake behaviour occurred. In addition, the homeostatic response to sleep deprivation was greatly attenuated with disease progression. These findings demonstrate the sensitivity of quantitative electroencephalographic analysis to identify early pathophysiological alterations in the R6/2 model of Huntington's disease and suggest longitudinal studies in other preclinical Huntington's disease models are needed to determine the generality of these observations as a potential adjunct in therapeutic development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.