NMR spectroscopy is an indispensably powerful technique for the analysis of biomolecules under ambient conditions, both for structural- and functional studies. However, in practice the complexity of the technique has often frustrated its application by non-specialists. In this paper, we present CcpNmr version-3, the latest software release from the Collaborative Computational Project for NMR, for all aspects of NMR data analysis, including liquid- and solid-state NMR data. This software has been designed to be simple, functional and flexible, and aims to ensure that routine tasks can be performed in a straightforward manner. We have designed the software according to modern software engineering principles and leveraged the capabilities of modern graphics libraries to simplify a variety of data analysis tasks. We describe the process of backbone assignment as an example of the flexibility and simplicity of implementing workflows, as well as the toolkit used to create the necessary graphics for this workflow. The package can be downloaded from www.ccpn.ac.uk/v3-software/downloads and is freely available to all non-profit organisations.
Cytochrome P450cam catalyzes the hydroxylation of camphor in a complex process involving two electron transfers (ETs) from the iron-sulfur protein putidaredoxin. The enzymatic control of the successive steps of catalysis is critical for a highly efficient reaction. The injection of the successive electrons is part of the control system. To understand the molecular interactions between putidaredoxin and cytochrome P450cam, we determined the structure of the complex both in solution and in the crystal state. Paramagnetic NMR spectroscopy using lanthanide tags yielded 446 structural restraints that were used to determine the solution structure. An ensemble of 10 structures with an RMSD of 1.3Å was obtained. The crystal structure of the complex was solved, showing a position of putidaredoxin that is identical with the one in the solution structure. The NMR data further demonstrate the presence of a minor state or set of states of the complex in solution, which is attributed to the presence of an encounter complex. The structure of the major state shows a small binding interface and a metal-to-metal distance of 16Å, with two pathways that provide strong electronic coupling of the redox centers. The interpretation of these results is discussed in the context of ET. The structure indicates that the ET rate can be much faster than the reported value, suggesting that the process may be gated.
Determining the three-dimensional structure of a small molecule-protein complex with weak affinity can be a significant challenge. We present a paramagnetic NMR method to determine intermolecular structure restraints based on pseudocontact shifts (PCSs). Since the ligand must be in fast exchange between free and bound states and the fraction bound can be as low as a few percent, the method is ideal for ligands with high micromolar to millimolar dissociation constants. Paramagnetic tags are attached, one at a time, in a well-defined way via two arms at several sites on the protein surface. The ligand PCSs were measured from simple 1D (1)H spectra and used as docking restraints. An independent confirmation of the complex structure was carried out using intermolecular NOEs. The results show that structures derived from these two approaches are similar. The best results are obtained if the magnetic susceptibility tensors of the tags are known, but it is demonstrated that with two-armed probes, the magnetic susceptibility tensor can be predicted with sufficient accuracy to provide a low-resolution model of the ligand orientation and the location of the binding site in the absence of isotope-labeled protein. This approach can facilitate fragment-based drug discovery in obtaining structural information on the initial fragment hits.
The energy landscapes of proteins are highly complex and can be influenced by changes in physical and chemical conditions under which the protein is studied. The redox enzyme cytochrome P450cam undergoes a multistep catalytic cycle wherein two electrons are transferred to the heme group and the enzyme visits several conformational states. Using paramagnetic NMR spectroscopy with a lanthanoid tag, we show that the enzyme bound to its redox partner, putidaredoxin, is in a closed state at ambient temperature in solution. This result contrasts with recent crystal structures of the complex, which suggest that the enzyme opens up when bound to its partner. The closed state supports a model of catalysis in which the substrate is locked in the active site pocket and the enzyme acts as an insulator for the reactive intermediates of the reaction.uring catalysis, an enzyme will traverse a conformational energy landscape that can be highly complex and easily changed by external factors, such as temperature, ionic strength, and crystallization. Cytochromes P450 (CYPs) are b-type hemecontaining monooxygenases found throughout the three domains of life. These enzymes catalyze the regiospecific and stereospecific hydroxylation of various aliphatic and aromatic compounds and are involved in a considerable number of metabolic processes, such as steroid biosynthesis and metabolism of xenobiotics in mammals. The CYP superfamily has been extensively studied over the past five decades, and an understanding of its mechanism is crucial for the development of pharmaceutical compounds that do not inhibit these enzymes. Under other circumstances, it is desirable to inhibit a CYP for therapeutic reasons. For example, compounds that inhibit CYP1B1 and CYP1A2 in humans have been proposed as promising anticancer agents (1). The archetypal member of this superfamily is CYP101A1 (more commonly known as P450cam) from Pseudomonas putida, which was the first CYP for which the 3D structure was determined by X-ray crystallography (2). P450cam catalyzes the hydroxylation of D-camphor to 5-exohydroxycamphor using two electrons, two protons, and molecular oxygen. Putidaredoxin (Pdx) reductase oxidizes NADH and transfers the electrons to Pdx, which, in turn, shuttles electrons to P450cam in two consecutive steps (3-5). This complex reaction is controlled by the enzyme to ensure an efficient coupling between dioxygen reduction and substrate hydroxylation and to avoid side reactions. P450cam must go through a cycle of several conformational and electronic states to perform its catalytic task (6).The first X-ray crystal structures of P450cam showed that the enzyme occupied a closed conformation, both in the presence and absence of substrate; therefore, it was unclear how the substrate was able to bind into the active site (2). Moreover, structures of the intermediates of the catalytic cycle were also in a closed conformation (7), leading to the idea that during the catalytic cycle, P450cam opens to bind camphor, closes to perform hydroxylation, and then re...
This report describes the working of the program CcpNmr Analysis for both NMR chemical shift assignment and structure determination of biological macromolecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.