Rationale: Clinical and epidemiologic data in coronavirus disease (COVID-19) have accrued rapidly since the outbreak, but few address the underlying pathophysiology. Objectives: To ascertain the physiologic, hematologic, and imaging basis of lung injury in severe COVID-19 pneumonia. Methods: Clinical, physiologic, and laboratory data were collated. Radiologic (computed tomography (CT) pulmonary angiography [n = 39] and dual-energy CT [DECT, n = 20]) studies were evaluated: observers quantified CT patterns (including the extent of abnormal lung and the presence and extent of dilated peripheral vessels) and perfusion defects on DECT. Coagulation status was assessed using thromboelastography. Measurements and Results: In 39 consecutive patients (male: female, 32:7; mean age, 53 6 10 yr [range, 29-79 yr]; Black and minority ethnic, n = 25 [64%]), there was a significant vascular perfusion abnormality and increased physiologic dead space (dynamic compliance, 33.7 6 14.7 ml/cm H 2 O; Murray lung injury score, 3.14 6 0.53; mean ventilatory ratios, 2.6 6 0.8) with evidence of hypercoagulability and fibrinolytic "shutdown". The mean CT extent (6SD) of normally aerated lung, ground-glass opacification, and dense parenchymal opacification were 23.5 6 16.7%, 36.3 6 24.7%, and 42.7 6 27.1%, respectively. Dilated peripheral vessels were present in 21/33 (63.6%) patients with at least two assessable lobes (including 10/21 [47.6%] with no evidence of acute pulmonary emboli). Perfusion defects on DECT (assessable in 18/20 [90%]) were present in all patients (wedge-shaped, n = 3; mottled, n = 9; mixed pattern, n = 6). Conclusions: Physiologic, hematologic, and imaging data show not only the presence of a hypercoagulable phenotype in severe COVID-19 pneumonia but also markedly impaired pulmonary perfusion likely caused by pulmonary angiopathy and thrombosis.
Transthoracic ultrasound (US) of the chest is useful in the evaluation of a wide range of peripheral parenchymal, pleural, and chest wall diseases. Furthermore, it is increasingly used to guide interventional procedures of the chest and pleural space. The technique lends itself to bedside use in the intensive care unit, where suboptimal radiography may mask or mimic clinically significant abnormalities. The authors discuss the uses, techniques and applications of US of the chest. The sonographic appearances of pleural diseases (pleural effusion, pneumothorax, pleural mass, and mesothelioma), parenchymal diseases (pneumonia, neoplasms, heart failure, infarct, and rounded atelectasis), chest wall abnormalities (chest wall tumor and rib fracture), and diaphragmatic paralysis are discussed. The use of US in guiding biopsy, thoracocentesis, and other interventional procedures of the lung, pleural space, and mediastinum are also reviewed.
In patients with obliterative bronchiolitis, the extent of decreased attenuation at CT was most strongly related to depression of pulmonary function tests of the small airways. Decreased attenuation is the cardinal sign for further quantitative studies of obliterative bronchiolitis.
Background: This study was designed to measure inter-observer variation between thoracic radiologists in the diagnosis of diffuse parenchymal lung disease (DPLD) using high resolution computed tomography (HRCT) and to identify areas of difficulty where expertise, in the form of national panels, would be of particular value. Methods: HRCT images of 131 patients with DPLD (from a tertiary referral hospital (n = 66) and regional teaching centres (n = 65)) were reviewed by 11 thoracic radiologists. Inter-observer variation for the first choice diagnosis was quantified using the unadjusted kappa coefficient of agreement. Observers stated differential diagnoses and assigned a percentage likelihood to each. A weighted kappa was calculated for the likelihood of each of the six most frequently diagnosed disease entities. Results: Observer agreement on the first choice diagnosis was moderate for the entire cohort (k = 0.48) and was higher for cases from regional centres (k = 0.60) than for cases from the tertiary referral centre (k = 0.34). 62% of cases from regional teaching centres were diagnosed with high confidence and good observer agreement (k = 0.77). Non-specific interstitial pneumonia (NSIP) was in the differential diagnosis in most disagreements (55%). Weighted kappa values quantifying the likelihood of specific diseases were moderate to good (mean 0.57, range 0.49-0.70). Conclusion: There is good agreement between thoracic radiologists for the HRCT diagnosis of DPLD encountered in regional teaching centres. However, cases diagnosed with low confidence, particularly where NSIP is considered as a differential diagnosis, may benefit from the expertise of a reference panel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.