The ionization probability of N2, O2, and CO2 in intense laser fields is studied theoretically as a function of the alignment angle by solving the time-dependent Schrödinger equation numerically assuming only the single-active-electron approximation. The results are compared to recent experimental data [D. Pavicić, Phys. Rev. Lett. 98, 243001 (2007)] and good agreement is found for N2 and O2. For CO2 a possible explanation is provided for the failure of simplified single-active-electron models to reproduce the experimentally observed narrow ionization distribution. It is based on a field-induced coherent core-trapping effect.
High harmonic spectra show that laser-induced strong field ionization of water has a significant contribution from an inner-valence orbital. Our experiment uses the ratio of H2O and D2O high harmonic yields to isolate the characteristic nuclear motion of the molecular ionic states. The nuclear motion initiated via ionization of the highest occupied molecular orbital (HOMO) is small and is expected to lead to similar harmonic yields for the two isotopes. In contrast, ionization of the second least bound orbital (HOMO-1) exhibits itself via a strong bending motion which creates a significant isotope effect. We elaborate on this interpretation by simulating strong field ionization and high harmonic generation from the water isotopes using the time-dependent Schrödinger equation. We expect that this isotope marking scheme for probing excited ionic states in strong field processes can be generalized to other molecules.
Ionization and excitation of water molecules in intense laser pulses are studied theoretically by solving the three-dimensional time-dependent electronic Schrodinger equation within the single-active-electron approximation. The possibility to image orbital densities by measurement of the orientation-dependent ionization of H2O in few-cycle, 800 nm linear-polarized laser pulses is investigated. While the highest-occupied molecular orbital 1b(1) is found to dominate the overall ionization behavior, contributions from the energetically lower lying 3a(1) orbital dominate the ionization yield in the nodal plane of the 1b(1) orbital. The ratio of the ionization yields of the two orbitals depends on the intensity. Furthermore, even for laser pulses as long as 8 cycles the orientation-dependent ion yield depends on the carrier-envelope phase. In the interpretation of the orientation-dependent ionization as an imaging tool these effects have to be considered
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.