All somatic mammalian cells carry two copies of chromosomes (diploidy), whereas organisms with a single copy of their genome such as yeast provide a basis for recessive genetics. Here we report the generation of haploid mouse ES cell lines from parthenogenetic embryos. These cells carry 20 chromosomes, express stem cell markers, and develop into all germ-layers in vitro and in vivo. We also developed a reversible mutagenesis protocol that allows saturated genetic recessive screens and results in homozygous alleles. This system allowed us to generate the first knock-out cell line for the microRNA processing enzyme Drosha. In a forward genetic screen, we identified Gpr107 as a molecule essential for killing by ricin, a toxin being used as bioweapon. Our results open the possibility to combine the power of a haploid genome with pluripotency of embryonic stem cells to uncover fundamental biological processes in defined cell types at a genomic scale.
SummaryCell therapies treating pathological muscle atrophy or damage requires an adequate quantity of muscle progenitor cells (MPCs) not currently attainable from adult donors. Here, we generate cultures of approximately 90% skeletal myogenic cells by treating human embryonic stem cells (ESCs) with the GSK3 inhibitor CHIR99021 followed by FGF2 and N2 supplements. Gene expression analysis identified progressive expression of mesoderm, somite, dermomyotome, and myotome markers, following patterns of embryonic myogenesis. CHIR99021 enhanced transcript levels of the pan-mesoderm gene T and paraxial-mesoderm genes MSGN1 and TBX6; immunofluorescence confirmed that 91% ± 6% of cells expressed T immediately following treatment. By 7 weeks, 47% ± 3% of cells were MYH+ve myocytes/myotubes surrounded by a 43% ± 4% population of PAX7+ve MPCs, indicating 90% of cells had achieved myogenic identity without any cell sorting. Treatment of mouse ESCs with these factors resulted in similar enhancements of myogenesis. These studies establish a foundation for serum-free and chemically defined monolayer skeletal myogenesis of ESCs.
Despite significant advances achieved through gene targeting in mouse embryonic stem (ES) cells, this technology is presently only available in mice. Because the rat is a species of undeniable importance to biomedical research, attempts at derivation of rat ES cell lines have been ongoing for many years; however, the putative rat ES cell lines that have been reported to date have not yet displayed the ability to contribute in vivo to developing tissues following embryo injection. In contrast to previous studies, we describe herein the successful derivation and characterization of rat ES-like cell lines that not only express markers of undifferentiated cells, alkaline phosphatase (AP) activity and stage-specific embryonic antigen-1 (SSEA-1) cell surface antigen, but also retain expression of Oct4 (also known as Pou5f1) a homeodomain transcription factor and molecular marker of pluripotent cells. Notably, these rat ES-like cells, when injected into blastocysts transferred to pseudopregnant females, can contribute to developing extraembryonic tissues. This report demonstrates for the first time that rat ES-like cells can be derived efficiently, can express a panel of pluripotent cell markers, can be genetically modified in vitro and cryopreserved, and importantly, are capable of contributing to extraembryonic tissues in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.