We present a new checkerboard detection algorithm which is able to detect checkerboards at extreme poses, or checkerboards which are highly distorted due to lens distortion even on low-resolution images. On the detected pattern we apply a surface fitting based subpixel refinement specifically tailored for checkerboard X-junctions. Finally, we investigate how the accuracy of a checkerboard detector affects the overall calibration result in multi-camera setups. The proposed method is evaluated on real images captured with different camera models to show its wide applicability. Quantitative comparisons to OpenCV's checkerboard detector show that the proposed method detects up to 80% more checkerboards and detects corner points more accurately, even under strong perspective distortion as often present in wide baseline stereo setups.
The proposed solution is able to solve surface registration problems with an accuracy suitable for radiotherapy cases where external surfaces offer primary or complementary information to patient positioning. The system shows promising dynamic properties for its use in gating/tracking applications. The overall system is competitive with commonly-used surface registration technologies. Its main benefit is the usage of a cost-effective off-the-shelf technology for surface acquisition. Further strategies to improve the registration accuracy are under development.
Many camera calibration techniques require the detection of a pattern with known geometry, e.g., a checkerboard. Typically, the pattern must be fully contained in the field of view. This brings several limitations, one of which is that lens distortion can not reliably be estimated in outer image regions.This paper presents the occluded checkerboard pattern detector (OCPAD) to find checkerboards, even in a) lowresolution images, b) images with high lens distortion and if c) the pattern is partly occluded or not completely within the field of view. We exploit that checkerboards can easily be represented by a graph. We use graph matching to find the largest partial checkerboard in the image. Our detector complements a state-of-the-art calibration algorithm. Quantitatively, detection rates are considerably improved over the state-of-the-art. Additionally, estimation of lens distortion is greatly improved at outer image regions. Here, the reprojection error is improved by up to 50%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.