In this paper we describe Herwig++ version 2.2, a general-purpose Monte Carlo event generator for the simulation of hard lepton-lepton and hadron-hadron collisions. A number of important hard scattering processes are available, together with an interface via the Les Houches Accord to specialized matrix element generators for additional processes. The simulation of Beyond the Standard Model (BSM) physics includes a range of models and allows new models to be added by encoding the Feynman rules of the model. The parton-shower approach is used to simulate initial-and final-state QCD radiation, including colour coherence effects, with special emphasis on the correct description of radiation from heavy particles. The underlying event is simulated using an eikonal multiple parton-parton scattering model. The formation of hadrons from the quarks and gluons produced in the parton shower is described using the cluster hadronization model. Hadron decays are simulated using matrix elements, where possible including spin correlations and off-shell effects.
A major new release of the Monte Carlo event generator Herwig++ (version 3.0) is now available. This release marks the end of distinguishing Herwig++ and HER-WIG development and therefore constitutes the first major release of version 7 of the Herwig event generator family. The new version features a number of significant improvements to the event simulation, including: built-in NLO hard process calculation for virtually all Standard Model processes, with matching to both angular-ordered and dipole shower modules via both subtractive (MC@NLO-type) and multiplicative (Powheg-type) algorithms; QED radiation and spin correlations in the angular-ordered shower; a consistent treatment of perturbative uncertainties within the hard process and parton showering. Several of the new features will be covered in detail in accompanying publications, and an update of the manual will follow in due course.
We report on the implementation of a coherent dipole shower algorithm along with an automated implementation for dipole subtraction and for performing powheg-and MC@NLO-type matching to nextto-leading order (NLO) calculations. Both programs are implemented as add-on modules to the event generator Herwig++. A preliminary tune of parameters to data acquired at LEP, HERA and Drell-Yan pair production at the Tevatron has been performed, and we find an overall very good description which is slightly improved by the NLO matching.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.